Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(6): e39057, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723929

RESUMO

Multifunctional envelope-type nanodevices (MENDs) are very promising non-viral gene delivery vectors because they are biocompatible and enable programmed packaging of various functional elements into an individual nanostructured liposome. Conventionally MENDs have been fabricated by complicated, labor-intensive, time-consuming bulk batch methods. To avoid these problems in MEND fabrication, we adopted a microfluidic chip with a chaotic mixer array on the floor of its reaction channel. The array was composed of 69 cycles of the staggered chaotic mixer with bas-relief structures. Although the reaction channel had very large Péclet numbers (>10(5)) favorable for laminar flows, its chaotic mixer array led to very small mixing lengths (<1.5 cm) and that allowed homogeneous mixing of MEND precursors in a short time. Using the microfluidic chip, we fabricated a double-lamellar MEND (D-MEND) composed of a condensed plasmid DNA core and a lipid bilayer membrane envelope as well as the D-MEND modified with trans-membrane peptide octaarginine. Our lab-on-a-chip approach was much simpler, faster, and more convenient for fabricating the MENDs, as compared with the conventional bulk batch approaches. Further, the physical properties of the on-chip-fabricated MENDs were comparable to or better than those of the bulk batch-fabricated MENDs. Our fabrication strategy using microfluidic chips with short mixing length reaction channels may provide practical ways for constructing more elegant liposome-based non-viral vectors that can effectively penetrate all membranes in cells and lead to high gene transfection efficiency.


Assuntos
Técnicas de Transferência de Genes , Microfluídica/instrumentação , Nanoestruturas/química , Bicamadas Lipídicas/química , Oligopeptídeos/química , Tamanho da Partícula , Plasmídeos/química , Poliaminas/química , Polieletrólitos
2.
Lab Chip ; 11(19): 3256-62, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21829858

RESUMO

Multifunctional envelope-type gene delivery nanodevices (MENDs) are promising non-viral vectors for gene therapy. Though MENDs remain strong in prolonged exposure to blood circulation, have low immunogenic response, and are suitable for gene targeting, their fabrication requires labor-intensive processes. In this work, a novel approach has been developed for rapid fabrication of MENDs by a touch-and-go lipid wrapping technique in a polydimethylsiloxane (PDMS)/glass microfluidic device. The MEND was fabricated on a glass substrate by introduction of a condensed plasmid DNA core into microfluidic channels that have multiple lipid bilayer films. The principle of the MEND fabrication in the microfluidic channels is based on electrostatic interaction between the condensed plasmid DNA cores and the coated lipid bilayer films. The constructed MEND was collected off-chip and characterized by dynamic light scattering. The MEND was constructed within 5 min with a narrow size distribution centered around 200 nm diameter particles. The size of the MEND showed strong dependence on flow velocity of the condensed plasmid DNA core in the microfluidic channels, and thus, could be controlled to provide the optimal size for medical applications. This approach was also proved possible for fabrication of a MEND in multiple channels at the same time. This on-chip fabrication of the MEND was very simple, rapid, convenient, and cost-effective compared with conventional methods. Our results strongly indicated that MENDs fabricated with our microfluidic device have a good potential for medical use. Moreover, MENDs fabricated by this microfluidic device have a great potential for clinical use because the devices are autoclavable and all the fabrication steps can be completed inside closed microfluidic channels without any external contamination.


Assuntos
Técnicas de Transferência de Genes/instrumentação , Bicamadas Lipídicas/química , Técnicas Analíticas Microfluídicas/métodos , Nanoestruturas/química , Dimetilpolisiloxanos/química , Vidro/química , Técnicas Analíticas Microfluídicas/instrumentação , Plasmídeos/química , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...