Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(36): 9806-9813, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736650

RESUMO

A direct intermolecular decarboxylative Giese amidation reaction from bench stable, non-toxic and environmentally benign oxamic acids has been developed, which allows for easy access to 1,4-difunctionalised compounds which are not otherwise readily accessible. Crucially, a more general acceptor substrate scope is now possible, which renders the Giese amidation applicable to more complex substrates such as natural products and chiral building blocks. Two different photocatalytic methods (one via oxidative and the other via reductive quenching cycles) and one metal- and light-free method were developed and the flexibility provided by different conditions proved to be crucial for enabling a more general substrate scope.

2.
Chem Soc Rev ; 51(4): 1415-1453, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35099488

RESUMO

The quest to find milder and more sustainable methods to generate highly reactive, carbon-centred intermediates has led to a resurgence of interest in radical chemistry. In particular, carboxylic acids are seen as attractive radical precursors due their availability, low cost, diversity, and sustainability. Moreover, the corresponding nucleophilic carbon-radical can be easily accessed through a favourable radical decarboxylation process, extruding CO2 as a traceless by-product. This review summarizes the recent progress on using carboxylic acids directly as convenient radical precursors for the formation of carbon-carbon bonds via the 1,4-radical conjugate addition (Giese) reaction.


Assuntos
Carbono , Ácidos Carboxílicos , Carbono/química , Ácidos Carboxílicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...