Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361720

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and most common malignant brain tumor with poor patient survival despite therapeutic intervention. On the cellular level, GBM comprises a rare population of glioblastoma stem cells (GSCs), driving therapeutic resistance, invasion, and recurrence. GSCs have thus come into the focus of therapeutic strategies, although their targeting remains challenging. In the present study, we took advantage of three GSCs-populations recently established in our lab to investigate key signaling pathways and subsequent therapeutic strategies targeting GSCs. We observed that NF-κB, a crucial transcription factor in GBM progression, was expressed in all CD44+/CD133+/Nestin+-GSC-populations. Exposure to TNFα led to activation of NF-κB-RELA and/or NF-κB-c-REL, depending on the GBM type. GSCs further expressed the proto-oncogene MYC family, with MYChigh GSCs being predominantly located in the tumor spheres ("GROW"-state) while NF-κB-RELAhigh GSCs were migrating out of the sphere ("GO"-state). We efficiently targeted GSCs by the pharmacologic inhibition of NF-κB using PTDC/Bortezomib or inhibition of MYC by KJ-Pyr-9, which significantly reduced GSC-viability, even in comparison to the standard chemotherapeutic drug temozolomide. As an additional cell-therapeutic strategy, we showed that NK cells could kill GSCs. Our findings offer new perspectives for developing efficient patient-specific chemo- and immunotherapy against GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Imunoterapia , Linhagem Celular Tumoral
2.
Sci Rep ; 10(1): 21858, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318498

RESUMO

A signalling pathway involving PLEKHG5 (guanine exchange factor) for the Ras superfamily member RAB26 to transcription factor NF-κB was discovered in autophagy. PLEKHG5 was reported in glioblastoma multiforme (GBM) and correlates with patient survival. Thus, the generation of a cellular model for understanding PLEKHG5 signalling is the study purpose. We generated a CRISPR/Cas9-mediated knockout of PLEKHG5 in U251-MG glioblastoma cells and analysed resulting changes. Next, we used a mRFP-GFP-LC3+ reporter for visualisation of autophagic defects and rescued the phenotype of PLEKHG5 wildtype via transduction of a constitutively active RAB26QL-plasmid. Effects of overexpressing RAB26 were investigated and correlated with the O6-methylguanine-DNA methyltransferase (MGMT) and cellular survival. PLEKHG5 knockout showed changes in morphology, loss of filopodia and higher population doubling times. Accumulation of autolysosomes was resulted by decreased LAMP-1 in PLEKHG5-deficient cells. Rescue of PLEKHG5-/- restored the downregulation of RhoA activity, showed faster response to tumour necrosis factor and better cellular fitness. MGMT expression was activated after RAB26 overexpression compared to non-transduced cells. Survival of PLEKHG5 knockout was rescued together with sensitivity to temozolomide by RAB26QL. This study provides new insights in the PLEKHG5/RAB26 signalling within U251-MG cells, which suggests potential therapeutic strategies in other glioma cells and further in primary GBM.


Assuntos
Autofagia , Metilases de Modificação do DNA/biossíntese , Enzimas Reparadoras do DNA/biossíntese , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Técnicas de Inativação de Genes , Glioblastoma/genética , Glioblastoma/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...