Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592777

RESUMO

The integration of semi-transparent photovoltaics into the roof of greenhouses is an emerging technique used in recent years, due to the simultaneous energy and food production from the same piece of land. Although shading in many cases is a solution to maintain the desired microclimate, in the case of photovoltaic installations, the permanent shading of the crop is a challenge, due to the importance of light to the growth, morphogenesis, and other critical physiological processes. In this study, the effect of shade from semi-transparent photovoltaics on a strawberry crop (Fragaria x ananassa Duch.) was examined, in terms of growth and quality (phenolic and flavonoid concentration of fruits). According to the results, in non-shaded plants, there was a trend of larger plants, but without a significant change in leaf number, while the total number of flowers was slightly higher at the end of the cultivation period. Moreover, it was found that the percentage change between the number of ripe fruits was smaller than that of the corresponding change in fruit weight, implying the increased size of the fruits in non-shaded plants. Finally, regarding the antioxidant capacity, it was clearly demonstrated that shading increased the total phenolic content, as well as the free-radical-scavenging activity of the harvested fruits. Although the shading from the semi-transparent photovoltaics did not assist the production of large fruits, it did not affect their number and increased some of their quality characteristics. In addition, the advantageous impact of the semi-transparent photovoltaics in the energy part must not be neglected.

2.
Insects ; 14(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36662019

RESUMO

There is ample evidence that entomopathogenic fungi can be used as alternative biological control agents for the management of insect pests in storage facilities. As the market demands more environmentally friendly methods and chemical insecticides become increasingly obsolete, more studies are being conducted to evaluate new strains of entomopathogenic fungi for their efficacy in storage facilities. In this context, we tested ten species of fungi isolated from soil, belonging to the genera Cladosporium, Condenascus, Lecanicillium, and Penicillium, for their long-term effects on economically important beetle species. Whole wheat was directly sprayed with a conidial suspension of 108 spores/Ml of each of the tested fungi and then adults of Sitophilus granarius, S. oryzae, S. zeamais, Rhyzopertha dominica, and Trogoderma granarium were placed on the sprayed medium to study the mortality effects. Significantly higher mortality than the control was observed in all treatments. The lowest LT50 (9.164 days) was observed in T. granarium infected with Penicillium goetzii. The isolate with the strongest results was L. dimorphum, which recorded remarkably low LT50 values in S. oryzae (~11 days), R. dominica (~12 days), T. granarium (~10 days), and S. granarius (~13 days). However, for S. zeamais, it was more than 16 days. Our results confirm the existing literature on the efficacy of EPF on storage beetles, suggest the possible virulence of wild untested strains, and also highlight the importance of EPF specificity.

3.
Microorganisms ; 10(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422376

RESUMO

Entomopathogenic fungi (EPF) can colonize plant tissues and serve crops not only as biopesticides but also as biostimulants that promote plant growth and trigger defense mechanisms. In this context, field trials were conducted evaluating two commercial strains of the entomopathogen Beauveria bassiana (Hypocreales: Cordycipitaceae), GHA (Botanigard) and PPRI 5339 (Velifer® ES) and a wild strain (AP0101) isolated from Achaia, Greece. The three strains were investigated in the field for their endophytic effects on melon Cucumis melo (Cucurbitales: Cucurbitaceae) and strawberry Fragaria sp. (Rosales: Rosaceae) plants and in particular for their ability to colonize plant tissues, control infestations of sucking insects Aphis gossypii (Hemiptera: Aphididae), Chaetosiphon fragaefolii (Hemiptera: Aphididae) and Frankliniella occidentalis (Thysanoptera: Thripidae), and improve plant growth parameters (plant height, number of flowers and fruits). All experimental fungal strains successfully colonized both plants. A significant decrease in the aphid and thrip populations was observed in the treated plants compared to the untreated control. As for plant growth, the number of flowers and fruits was significantly increased in plants treated with B. bassiana strains AP0101 and PPRI 5339. Our results clearly indicate that fungal endophytes can efficiently act as dual action agents demonstrating both insecticidal and growth-promoting effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...