Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 27(6): 1065-1075, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770256

RESUMO

The ecdysone receptor (EcR) is an insect nuclear receptor that is activated by the molting hormone, 20-hydroxyecdysone. Because synthetic EcR ligands disrupt the normal growth of insects, they are attractive candidates for new insecticides. In this study, the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method was used to predict the binding activity of EcR ligands. Validity analyses using 40 known EcR ligands showed that the binding activity was satisfactorily predicted when the ligand conformational free energy term was introduced. Subsequently, this MM/PBSA method was applied to structure-based hierarchical virtual screening, and 12 candidate compounds were selected from a database of 3.8 million compounds. Five of these compounds were active in a cell-based competitive binding assay. The most potent compound is a simple proline derivative with low micromolar binding activity, representing a valuable lead compound for further structural optimization.


Assuntos
Proteínas de Insetos/antagonistas & inibidores , Inseticidas/química , Receptores de Esteroides/antagonistas & inibidores , Animais , Bases de Dados de Produtos Farmacêuticos , Desenho de Fármacos , Proteínas de Insetos/metabolismo , Insetos/efeitos dos fármacos , Insetos/metabolismo , Inseticidas/metabolismo , Inseticidas/toxicidade , Ligantes , Simulação de Dinâmica Molecular , Receptores de Esteroides/metabolismo , Termodinâmica
2.
J Agric Food Chem ; 65(36): 7865-7873, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28820587

RESUMO

A novel chemotype insecticide flupyrimin (FLP) [N-[(E)-1-(6-chloro-3-pyridinylmethyl)pyridin-2(1H)-ylidene]-2,2,2-trifluoroacetamide], discovered by Meiji Seika Pharma, has unique biological properties, including outstanding potency to imidacloprid (IMI)-resistant rice pests together with superior safety toward pollinators. Intriguingly, FLP acts as a nicotinic antagonist in American cockroach neurons, and [3H]FLP binds to the multiple high-affinity binding components in house fly nicotinic acetylcholine (ACh) receptor (nAChR) preparation. One of the [3H]FLP receptors is identical to the IMI receptor, and the alternative is IMI-insensitive subtype. Furthermore, FLP is favorably safe to rats as predicted by the very low affinity to the rat α4ß2 nAChR. Structure-activity relationships of FLP analogues in terms of receptor potency, featuring the pyridinylidene and trifluoroacetyl pharmacophores, were examined, thereby establishing the FLP molecular recognition at the Aplysia californica ACh-binding protein, a suitable structural surrogate of the insect nAChR. These FLP pharmacophores account for the excellent receptor affinity, accordingly revealing differences in its binding mechanism from IMI.


Assuntos
Inseticidas/química , Inseticidas/farmacologia , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/química , Animais , Aplysia/efeitos dos fármacos , Aplysia/metabolismo , Sítios de Ligação , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Cinética , Periplaneta/efeitos dos fármacos , Periplaneta/genética , Periplaneta/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade
3.
Pest Manag Sci ; 66(5): 526-35, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20069627

RESUMO

BACKGROUND: Dibenzoylhydrazine analogues have been developed successfully as a new group of insect growth regulators, called ecdysone agonists or moulting accelerating compounds. A notable feature is their high activity against lepidopteran insects, raising the question as to whether species-specific analogues can be isolated. In this study, the specificity of ecdysone agonists was addressed through a comparative analysis in two important lepidopterans, the silkworm Bombyx mori L. and the cotton leafworm Spodoptera littoralis (Boisd.). RESULTS: When collections of non-steroidal ecdysone agonists containing different mother structures (dibenzoylhydrazine, acylaminoketone, tetrahydroquinoline) were tested, in vitro reporter assays showed minor differences using cell lines derived from both species. However, when compounds with high ecdysone agonist activity were examined in toxicity assays, larvicidal activity differed considerably. Of note was the identification of three dibenzoylhydrazine analogues with > 100-fold higher activity against Bombyx than against Spodoptera larvae. CONCLUSION: The present study demonstrated that species-specific ecdysone-agonist-based insecticides can be developed, but their species specificity is not based on differences in the activation of the ecdysone receptor but rather on unidentified in vivo parameters such as permeability of the cuticle, uptake/excretion by the gut or metabolic detoxification.


Assuntos
Bombyx/efeitos dos fármacos , Genes Reporter/genética , Hormônios Juvenis/toxicidade , Muda/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Bombyx/metabolismo , Linhagem Celular , Ecdisona/agonistas , Ecdisona/antagonistas & inibidores , Hidrazinas/toxicidade , Larva/efeitos dos fármacos , Receptores de Esteroides/metabolismo , Especificidade da Espécie , Spodoptera/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...