Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(49): 8425-8441, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798131

RESUMO

Basal forebrain (BF) projections to the hippocampus and cortex are anatomically positioned to influence a broad range of cognitive capacities that are known to decline in normal aging, including executive function and memory. Although a long history of research on neurocognitive aging has focused on the role of the cholinergic basal forebrain system, intermingled GABAergic cells are numerically as prominent and well positioned to regulate the activity of their cortical projection targets, including the hippocampus and prefrontal cortex. The effects of aging on noncholinergic BF neurons in primates, however, are largely unknown. In this study, we conducted quantitative morphometric analyses in brains from young adult (6 females, 2 males) and aged (11 females, 5 males) rhesus monkeys (Macaca mulatta) that displayed significant impairment on standard tests that require the prefrontal cortex and hippocampus. Cholinergic (ChAT+) and GABAergic (GAD67+) neurons were quantified through the full rostrocaudal extent of the BF. Total BF immunopositive neuron number (ChAT+ plus GAD67+) was significantly lower in aged monkeys compared with young, largely because of fewer GAD67+ cells. Additionally, GAD67+ neuron volume was greater selectively in aged monkeys without cognitive impairment compared with young monkeys. These findings indicate that the GABAergic component of the primate BF is disproportionally vulnerable to aging, implying a loss of inhibitory drive to cortical circuitry. Moreover, adaptive reorganization of the GABAergic circuitry may contribute to successful neurocognitive outcomes.SIGNIFICANCE STATEMENT A long history of research has confirmed the role of the basal forebrain in cognitive aging. The majority of that work has focused on BF cholinergic neurons that innervate the cortical mantle. Codistributed BF GABAergic populations are also well positioned to influence cognitive function, yet little is known about this prominent neuronal population in the aged brain. In this unprecedented quantitative comparison of both cholinergic and GABAergic BF neurons in young and aged rhesus macaques, we found that neuron number is significantly reduced in the aged BF compared with young, and that this reduction is disproportionately because of a loss of GABAergic neurons. Together, our findings encourage a new perspective on the functional organization of the primate BF in neurocognitive aging.


Assuntos
Prosencéfalo Basal , Envelhecimento Cognitivo , Animais , Masculino , Feminino , Prosencéfalo Basal/fisiologia , Macaca mulatta , Neurônios Colinérgicos , Envelhecimento/fisiologia , Colinérgicos
2.
Mol Neurobiol ; 57(6): 2727-2740, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32333254

RESUMO

Aging is accompanied by aberrant gene expression that ultimately affects brain plasticity and the capacity to form long-term memories. Immediate-early genes (IEGs) play an active role in these processes. Using a rat model of normal cognitive aging, we found that the expression of Egr1 and c-Fos was associated with chronological age, whereas Arc was more tightly linked to cognitive outcomes in aging. More specifically, constitutive Arc expression was significantly elevated in aged rats with memory impairment compared to cognitively intact aged rats and young adult animals. Since alterations in the neuroepigenetic mechanisms that gate hippocampal gene expression are also associated with cognitive outcome in aging, we narrowed our focus on examining potential epigenetic mechanisms that may lead to aberrant Arc expression. Employing a multilevel analytical approach using bisulfite sequencing, chromatin immunoprecipitations, and micrococcal nuclease digestion, we identified CpG sites in the Arc promoter that were coupled to poor cognitive outcomes in aging, histone marks that were similarly coupled to spatial memory deficits, and nucleosome positioning that also varied depending on cognitive status. Together, these findings paint a diverse and complex picture of the Arc epigenetic landscape in cognitive aging and bolster a body of work, indicating that dysfunctional epigenetic regulation is associated with memory impairment in the aged brain.


Assuntos
Envelhecimento Cognitivo/fisiologia , Proteínas do Citoesqueleto/genética , Aprendizagem em Labirinto/fisiologia , Proteínas do Tecido Nervoso/genética , Memória Espacial/fisiologia , Animais , Proteínas do Citoesqueleto/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans
3.
Curr Opin Chem Biol ; 16(3-4): 329-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22818777

RESUMO

Synthetic biology relies on engineering concepts such as abstraction, standardization, and decoupling to develop systems that address environmental, clinical, and industrial needs. Recent advances in applying modular design to system development have enabled creation of increasingly complex systems. However, several challenges to module and system development remain, including syntactic errors, semantic errors, parameter mismatches, contextual sensitivity, noise and evolution, and load and stress. To combat these challenges, researchers should develop a framework for describing and reasoning about biological information, design systems with modularity in mind, and investigate how to predictively describe the diverse sources and consequences of metabolic load and stress.


Assuntos
Engenharia Genética/métodos , Animais , Evolução Molecular , Estresse Fisiológico/genética
4.
ACS Synth Biol ; 1(12): 583-9, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23656280

RESUMO

Dramatic improvements to computational, robotic, and biological tools have enabled genetic engineers to conduct increasingly sophisticated experiments. Further development of biological tools offers a route to bypass complex or expensive mechanical operations, thereby reducing the time and cost of highly parallelized experiments. Here, we engineer a system based on bacteriophage P1 to transfer DNA from one E. coli cell to another, bypassing the need for intermediate DNA isolation (e.g., minipreps). To initiate plasmid transfer, we refactored a native phage element into a DNA module capable of heterologously inducing phage lysis. After incorporating known cis-acting elements, we identified a novel cis-acting element that further improves transduction efficiency, exemplifying the ability of synthetic systems to offer insight into native ones. The system transfers DNAs up to 25 kilobases, the maximum assayed size, and operates well at microliter volumes, enabling manipulation of most routinely used DNAs. The system's large DNA capacity and physical coupling of phage particles to phagemid DNA suggest applicability to biosynthetic pathway evolution, functional proteomics, and ultimately, diverse molecular biology operations including DNA fabrication.


Assuntos
Bacteriófago P1/genética , DNA/genética , Engenharia Genética/métodos , Plasmídeos/genética , Escherichia coli/genética , Vetores Genéticos/genética , Proteoma/genética , Transcrição Gênica/genética , Transdução Genética/métodos
5.
J Biol Eng ; 5: 10, 2011 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-21787416

RESUMO

BACKGROUND: Engineers frequently vary design parameters to optimize the behaviour of a system. However, synthetic biologists lack the tools to rapidly explore a critical design parameter, gene expression level, and have no means of systematically varying the dosage of an entire genetic circuit. As a step toward overcoming this shortfall, we have developed a technology that enables the same plasmid to be maintained at different copy numbers in a set of closely related cells. This provides a rapid method for exploring gene or cassette dosage effects. RESULTS: We engineered two sets of strains to constitutively provide a trans-acting replication factor, either Pi of the R6K plasmid or RepA of the ColE2 plasmid, at different doses. Each DIAL (different allele) strain supports the replication of a corresponding plasmid at a constant level between 1 and 250 copies per cell. The plasmids exhibit cell-to-cell variability comparable to other popular replicons, but with improved stability. Since the origins are orthogonal, both replication factors can be incorporated into the same cell. We demonstrate the utility of these strains by rapidly assessing the optimal expression level of a model biosynthetic pathway for violecein. CONCLUSIONS: The DIAL strains can rapidly optimize single gene expression levels, help balance expression of functionally coupled genetic elements, improve investigation of gene and circuit dosage effects, and enable faster development of metabolic pathways.

6.
Nucleic Acids Res ; 38(8): 2607-16, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20335162

RESUMO

Generating a defined set of genetic constructs within a large combinatorial space provides a powerful method for engineering novel biological functions. However, the process of assembling more than a few specific DNA sequences can be costly, time consuming and error prone. Even if a correct theoretical construction scheme is developed manually, it is likely to be suboptimal by any number of cost metrics. Modular, robust and formal approaches are needed for exploring these vast design spaces. By automating the design of DNA fabrication schemes using computational algorithms, we can eliminate human error while reducing redundant operations, thus minimizing the time and cost required for conducting biological engineering experiments. Here, we provide algorithms that optimize the simultaneous assembly of a collection of related DNA sequences. We compare our algorithms to an exhaustive search on a small synthetic dataset and our results show that our algorithms can quickly find an optimal solution. Comparison with random search approaches on two real-world datasets show that our algorithms can also quickly find lower-cost solutions for large datasets.


Assuntos
Algoritmos , DNA/química , Engenharia Genética , Sequência de Bases
7.
Biochemistry ; 45(37): 11096-102, 2006 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16964970

RESUMO

The periplasmic protein CusF, as a part of the CusCFBA efflux complex, plays a role in resistance to elevated levels of copper and silver in Escherichia coli. Although homologues have been identified in other Gram-negative bacteria, the substrate of CusF and its precise role in metal resistance have not been described. Here, isothermal titration calorimetry (ITC) was used to demonstrate that CusF binds with high affinity to both Cu(I) and Ag(I) but not Cu(II). The affinity of CusF for Ag(I) was higher than that for Cu(I), which could reflect more efficient detoxification of Ag(I) given the lack of a cellular need for Ag(I). The chemical shifts in the nuclear magnetic resonance (NMR) spectra of CusF-Ag(I) as compared to apo-CusF show that the region of CusF most affected by Ag(I) binding encompasses three absolutely conserved residues: H36, M47, and M49. This suggests that these residues may play a role in Ag(I) coordination. The NMR spectra of CusF in the presence of Cu(II) do not indicate specific binding, which is in agreement with the ITC data. We conclude that Cu(I) and Ag(I) are the likely physiological substrates.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Iodetos/metabolismo , Compostos de Prata/metabolismo , Sítios de Ligação , Calorimetria/métodos , Proteínas de Transporte de Cátions/química , Cobre/química , Proteínas de Transporte de Cobre , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Iodetos/química , Espectroscopia de Ressonância Magnética , Conformação Proteica , Compostos de Prata/química , Especificidade por Substrato
8.
Proteomics ; 6(1): 94-110, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16302279

RESUMO

In the biopharmaceutical industry, recombinant protein drugs are commonly produced in Chinese hamster ovary (CHO) cells. During the development process, removal of CHO cell-derived proteins from the biopharmaceutical product is monitored using multi-product immunoassays. Such immunoassays are developed by raising antibodies to a single CHO cell protein preparation. However, these assays are utilized to monitor CHO cell protein impurities during the recovery of products from different CHO cell lines. To address whether underlying differences between CHO cell lines result in sufficient protein expression changes to exclude the suitability of multi-product immunoassays, a comparative proteomics study of three independently generated CHO cell lines was performed. Statistical analysis of over 1000 proteins resolved by 2-D PAGE demonstrated that the protein expression profiles of three different CHO cell lines exhibit very few differences in protein expression. Only 11 qualitative changes in protein expression and 26 quantitative changes greater than two-fold were observed. Identification of protein spots by mass spectrometry revealed that many of the observed changes were due to post-translational modifications rather than expression of novel proteins in each cell line. These results suggest that multi-product immunoassays are suitable for monitoring host cell proteins in biopharmaceuticals produced in different CHO cell lines.


Assuntos
Imunoensaio/métodos , Proteoma , Animais , Sequência de Bases , Células CHO , Divisão Celular , Separação Celular , Cricetinae , Primers do DNA , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tetra-Hidrofolato Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...