Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 2): 217-221, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363223

RESUMO

Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxylate site for metal-ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxylate oxygen lone pair orbitals, through which electron density around carboxylate oxygen sites is redistributed and metal-ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature.

2.
Sci Rep ; 13(1): 4639, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944681

RESUMO

Lithium-ion deintercalation/intercalation during charge/discharge processes is one of the essential reactions that occur in the layered cathodes of lithium-ion batteries, and the performance of the cathode can be expressed as the sum of the reactions that occur in the local area of the individual cathode particles. In this study, the spatial distributions of the chemical states present in prototypical layered LiCoO2 cathode particles were determined at different charging conditions using scanning transmission X-ray microscopy (STXM) with a spatial resolution of approximately 100 nm. The Co L3- and O K-edge X-ray absorption spectroscopy (XAS) spectra, extracted from the same area of the corresponding STXM images, at the initial state as well as after charging to 4.5 V demonstrate the spatial distribution of the chemical state changes depending on individual particles. In addition to the Co L3-edge XAS spectra, the O K-edge XAS spectra of the initial and charged LiCoO2 particles are different, indicating that both the Co and O sites participate in charge compensation during the charging process possibly through the hybridization between the Co 3d and O 2p orbitals. Furthermore, the element maps of both the Co and O sites, derived from the STXM stack images, reveal the spatial distribution of the chemical states inside individual particles after charging to 4.5 V. The element mapping analysis suggests that inhomogeneous reactions occur on the active particles and confirm the existence of non-active particles. The results of this study demonstrate that an STXM-based spatially resolved electronic structural analysis method is useful for understanding the charging and discharging of battery materials.

3.
Phys Chem Chem Phys ; 24(32): 19177-19183, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35731227

RESUMO

The Mn 3d electronic-structure change of the LiMn2O4 cathode during Li-ion extraction/insertion in an aqueous electrolyte solution was studied by operando resonant soft X-ray emission spectroscopy (RXES). The Mn L3 RXES spectra for the charged state revealed the Mn4+ state with strong charge-transfer from the O 2p to Mn 3d orbitals dominates, while for the open-circuit-voltage and discharged states it is ascribed to the mixture of sites with Mn3+ and Mn4+ states. The degree of charge transfer is significantly different between the Mn3+ and Mn4+ states, indicating that the redox reaction takes place on the strongly-hybridized Mn 3d-O 2p orbital rather than the localized Mn 3d orbital.

4.
J Am Chem Soc ; 144(1): 236-247, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34957828

RESUMO

Li2MnO3 is a promising cathode candidate for Li-ion batteries because of its high discharge capacity; however, its reaction mechanism during cycling has not been sufficiently explicated. Observations of Mn and O binding energy shifts in operando hard X-ray photoelectron spectroscopy measurements enabled us to determine the charge-compensation mechanism of Li2MnO3. The O 1s peak splits at an early stage during the first charge, and the concentration of lower-valence O changes reversibly with cycling, indicating the formation of a low-valence O species that intrinsically participates in the redox reaction. The O 1s peak-splitting behavior, which indicates the number of valences of O in Li2MnO3, is supported by the computational results for an O3 to O1 structural transition. This is in agreement with the results of our previous study, wherein we confirmed this O3 to O1 transition based on in situ surface X-ray diffraction analysis, X-ray photoelectron spectroscopy, and first-principles formation energy calculations.

5.
Commun Chem ; 5(1): 52, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36697852

RESUMO

Material characterization that informs research and development of batteries is generally based on well-established ex situ and in situ experimental methods that do not consider the band structure. This is because experimental extraction of structural information for liquid-electrolyte batteries is extremely challenging. However, this hole in the available experimental data negatively affects the development of new battery systems. Herein, we determined the entire band structure of a model thin-film solid-state battery with respect to an absolute potential using operando hard X-ray photoelectron spectroscopy by treating the battery as a semiconductor device. We confirmed drastic changes in the band structure during charging, such as interfacial band bending, and determined the electrolyte potential window and overpotential location at high voltage. This enabled us to identify possible interfacial side reactions, for example, the formation of the decomposition layer and the space charge layer. Notably, this information can only be obtained by evaluating the battery band structure during operation. The obtained insights deepen our understanding of battery reactions and provide a novel protocol for battery design.

6.
J Am Chem Soc ; 143(17): 6505-6515, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33887903

RESUMO

The reaction pathway of the oxygen reduction reaction (ORR) is strongly affected by the electrolytic environment. Meanwhile, the ORR mechanism on transition-metal oxide catalysts has not been studied intensely in very concentrated alkaline solutions that are used in practical metal-air batteries. Herein, we report the in situ activation of ORR catalysis on manganese perovskite in a concentrated alkaline solution, mediated by the spontaneous formation of oxygen vacancy sites. Electrochemical analyses of the (100) epitaxial film electrodes reveal that the exchange current and electron number of the ORR on La0.7Sr0.3Mn0.9Ni0.1O3 significantly increase with the duration of the ORR when the KOH concentration is greater than 4 M. However, these values remain unchanged with time at less than 1 M KOH concentration. Operando synchrotron X-ray spectroscopy of the (100) epitaxial film confirmed that La0.7Sr0.3Mn0.9Ni0.1O3 involves the oxygen vacancy sites with the reduction of Mn atoms in concentrated KOH solution via the hydroxylation decomposition of perhydroxyl intermediates. Hence, the O2 adsorption switched from an end-on to a bidentate mode because the cooperative active sites of the oxygen vacancy and neighboring Mn allow bidentate adsorption of the dissolved O2. Due to the simultaneous interaction with the oxygen vacancy and Mn sites, the O-O bonds are activated and the potential barrier for the electron transfer to adsorbed O2 is lowered, resulting in a shift in the reaction mechanism from that involving an indirect "2 + 2" transfer pathway to a direct 4-electron pathway.

7.
Anal Chem ; 92(14): 9956-9962, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32573217

RESUMO

In liquid electrolytes used for a battery, various metal complexes are formed as a result of ion-solvent and ion-ion interactions, which strongly influence the properties of the electrolyte and thus the performance of the battery. Therefore, the structural characterization of such complexes is of great importance. In this study, the anomalous X-ray scattering (AXS) technique was applied to the potassium hydroxide solution including ∼0.3 mol % zinc, which is widely used in various batteries such as the alkaline battery. In spite of the small amount of the metallic ions, we have successfully extracted a local structure around zinc after careful data analysis. The obtained pair distribution function exhibited not only the short-range correlation corresponding to the Zn-O bond within the zincate anion but also a medium-range correlation above 3.5 Å. The present study demonstrates the capability of the AXS technique to detect local structures around dilute metallic ions in liquid electrolytes, which will largely extend the applicable range of this technique, especially to the field related to batteries.

8.
Rev Sci Instrum ; 91(3): 033907, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32260019

RESUMO

A half-cell of the rechargeable Li-ion battery was developed to characterize an electrolyte structure using high energy x-ray total scattering measurements in combination with a two-dimensional x-ray detector. The scattering pattern consisted of strong Bragg peaks from electrodes and diffuse scatterings from sapphire windows, in addition to a weak halo pattern from the electrolyte. By selectively removing the signals of the electrodes and windows using specific numerical procedures, we could successfully extract the structural information of the electrolyte, which was in reasonable agreement with the reference data obtained from the electrolyte in a glass capillary. The present demonstration with a half-cell is expected to shed new light on operand characterization of the electrolyte structure during charging and discharging.

9.
Phys Chem Chem Phys ; 21(48): 26351-26357, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31782415

RESUMO

Drastic electronic-structure changes in an Fe2O3 thin film anode for a Li-ion battery during discharge (lithiation) and charge (delithiation) processes were observed using operando Fe 2p soft X-ray emission spectroscopy (XES). The conversion reaction forming metallic iron due to the lithiation reaction was confirmed by operando XES in combination with the analysis using full-multiplet calculation. The valence of Fe at the open-circuit voltage (OCV) before the second cycle was not Fe3+, but Fe2+ with a weak p-d hybridization, suggesting a considerable irreversibility upon the first discharge-charge cycle and a weakened Fe-O bond after the first cycle. Moreover, we revealed that the Fe 3d electronic-structure change during the second cycle was to some extent reversible as Fe2+ (2.7 V vs. Li/Li+: open circuit voltage) → Fe0 (0.1 V vs. Li/Li+: discharged) → Fe(2+δ)+ (3.0 V vs. Li/Li+: charged). This operando Fe 2p XES in combination with the full-multiplet calculation provides detailed information for redox chemistry during a discharge-charge operation that cannot be obtained by other methods such as crystal-structure and morphology analyses. XES is thus very powerful for investigating the origin and limitation of the lithiation function of anodes involving conversion reactions.

10.
Phys Chem Chem Phys ; 21(33): 18363-18369, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31403150

RESUMO

High-energy-resolution soft X-ray emission spectroscopy (XES) was applied to understand the changes in the electronic structure of LiMn2O4 upon Li-ion extraction/insertion. Mn 2p-3d-2p resonant XES spectra were analyzed by configuration-interaction full-multiplet (CIFM) calculations, which reproduced both dd and charge-transfer (CT) excitations. From the resonant XES spectra it is found that Mn3+ and Mn4+ coexist in the initial state, while this changes into Mn4+ in the charged-state. For the discharged-state, the Mn3+ component appears again although the dd excitations are slightly modified from those for the initial state. Furthermore, negative CT energy is expected for the Mn4+ configuration, which suggests very strong hybridization between the Mn 3d and O 2p orbitals. The large difference in the CT effect between the Mn4+ and Mn3+ states should give mechanical stress to the Mn-O bond during charge-discharge cycling, leading to capacity fading.

11.
ACS Appl Mater Interfaces ; 11(34): 30959-30967, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31390177

RESUMO

Conversion-type iron trifluoride (FeF3) has attracted considerable attention as a positive electrode material for lithium secondary batteries due to its high energy density and low cost. However, the conversion process through which FeF3 operates leads it to suffer from capacity degradation upon repeated cycling. To improve the cycle performance, in this study we investigated the degradation mechanism of conversion-type FeF3 electrode material. Bulk analyses of FeF3 upon cycling reveal incomplete oxidation to Fe3+ concomitant with the aggregation of LiF at the charged state. In addition, surface analyses of FeF3 reveal that a film covered the electrode surface after 10 cycles, which leads to a remarkable increase in resistance. We show that the choice of the electrolyte formulation is crucial in preventing the formation of the film on the electrode surface; thus, FeF3 shows better performance in an electrolyte comprising LiBF4 solute in cyclic carbonate solvents than in chain carbonate-containing LiPF6 as the electrolyte. This study underpins that a careful selection of solvent, rather than solute, is significantly essential to improve the cycle performance of the FeF3 electrode.

12.
ACS Appl Mater Interfaces ; 11(32): 28823-28829, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31339683

RESUMO

Rechargeable zinc-air batteries are considered as one of the possible candidates to replace conventional lithium-ion batteries. One of the requirements for effective battery operation is an oxygen evolution reaction (OER) that needs to be generated in a highly alkaline electrolyte. The A2BB'O5 brownmillerite-type Ca2FeCoO5 electrocatalyst having a 57 Pbcm symmetry exhibits very high electrocatalytic activity toward OER in 4 mol dm-3 KOH. Our studies show that the electrocatalyst undergoes bulk amorphization upon OER and adequately activates catalytically active domains. The synchrotron radiation studies using the extended X-ray absorption fine structure (EXAFS) technique show that the central structural unit found in the polarized Ca2FeCoO5 is a cluster of edge-sharing CoO6 octahedra. The electrochemical data indicate that OER preferentially takes place on the edge-sharing CoO6 octahedra catalytic centers reconstructed in the brownmillerite-type electrocatalyst. The EXAFS second shell peaks at an interatomic distance of 2.8 Å are the fingerprints of the catalytically active domains.

13.
J Synchrotron Radiat ; 24(Pt 2): 449-455, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28244439

RESUMO

A compact and portable magnet system for measuring magnetic dichroism in resonant inelastic soft X-ray scattering (SX-RIXS) has been developed at the beamline BL07LSU in SPring-8. A magnetic circuit composed of Nd-Fe-B permanent magnets, which realised ∼0.25 T at the center of an 11 mm gap, was rotatable around the axis perpendicular to the X-ray scattering plane. Using the system, a SX-RIXS spectrum was obtained under the application of the magnetic field at an angle parallel, nearly 45° or perpendicular to the incident X-rays. A dedicated sample stage was also designed to be as compact as possible, making it possible to perform SX-RIXS measurements at arbitrary incident angles by rotating the sample stage in the gap between the magnetic poles. This system enables facile studies of magnetic dichroism in SX-RIXS for various experimental geometries of the sample and the magnetic field. A brief demonstration of the application is presented.

14.
Nat Commun ; 7: 11397, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27088834

RESUMO

Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na(1/3)Ru(2/3)]O2 slabs delivers a capacity of 180 mAh g(-1) (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g(-1) (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.

15.
Nanoscale Res Lett ; 11(1): 127, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26951127

RESUMO

The characteristics of CO2 adsorption sites on a nitrogen-doped graphite model system (N-HOPG) were investigated by X-ray photoelectron and absorption spectroscopy and infrared reflection absorption spectroscopy. Adsorbed CO2 was observed lying flat on N-HOPG, stabilized by a charge transfer from the substrate. This demonstrated that Lewis base sites were formed by the incorporation of nitrogen via low-energy nitrogen-ion sputtering. The possible roles of twofold coordinated pyridinic N and threefold coordinated valley N (graphitic N) sites in Lewis base site formation on N-HOPG are discussed. The presence of these nitrogen species focused on the appropriate interaction strength of CO2 indicates the potential to fine-tune the Lewis basicity of carbon-based catalysts.

16.
Phys Chem Chem Phys ; 18(1): 458-65, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26615959

RESUMO

The electronic structures of nitrogen species incorporated into highly oriented pyrolytic graphite (HOPG), prepared by low energy (200 eV) nitrogen ion sputtering and subsequent annealing at 1000 K, were investigated by X-ray photoelectron spectroscopy (XPS), angle-dependent X-ray absorption spectroscopy (XAS), and Raman spectroscopy. An additional peak was observed at higher binding energy of 401.9 eV than 400.9 eV for graphitic1 N (graphitic N in the basal plane) in N 1s XPS, where graphitic2 N (graphitic N in the zigzag edge and/or vacancy sites) has been theoretically expected to appear. N 1s XPS showed that graphitic1 N and graphitic2 N were preferably incorporated under low nitrogen content doping conditions (8 × 10(13) ions cm(-2)), while pyridinic N and graphitic1 N were dominantly observed under high nitrogen content doping conditions. In addition, angle-dependent N 1s XAS showed that the graphitic N and pyridinic N atoms were incorporated into the basal plane of HOPG and thus were highly oriented. Furthermore, Raman spectroscopy revealed that low energy sputtering resulted in almost no fraction of the disturbed graphite surface layers under the lowest nitrogen doping condition. The suitable nitrogen doping condition was discovered for realizing the well-controlled nitrogen doped HOPG. The electrochemical properties for the oxygen reduction reaction of these samples in acidic solution were examined and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...