Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(39): 12287-12296, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36126343

RESUMO

Basil (Ocimum basilicum, cv. Dolly) grew under three different light spectra (A, B, and C) created by light-emitting diode lamps. The proportions of UV-A, blue, and green-yellow wavelengths decreased linearly from A to C, and the proportions of red and far-red wavelengths increased from A to C. Photosynthetic photon flux density was 300 µmol m-2 s-1 in all spectra. The spectrum C plants had highest concentrations of phenolic acids (main compounds: rosmarinic acid and cichoric acid), lowest concentrations and emissions of phenylpropanoid eugenol and terpenoids (main compounds: linalool and 1,8-cineole), highest dry weight, and lowest water content. Conversely, spectra A and B caused higher terpenoid and eugenol concentrations and emissions and lower concentrations of phenolic acids. High density of peltate glandular trichomes explained high terpenoid and eugenol concentrations and emissions. Basil growth and secondary compounds affecting aroma and taste can be modified by altering light spectra; however, increasing terpenoids and phenylpropanoids decreases phenolic acids and growth and vice versa.


Assuntos
Ocimum basilicum , Eucaliptol , Eugenol , Hidroxibenzoatos , Folhas de Planta , Terpenos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...