Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 21(7): 993-1003, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33609457

RESUMO

BACKGROUND: Trials done in infants with low birthweight in west Africa suggest that BCG vaccination reduces all-cause mortality in the neonatal period, probably because of heterologous protection against non-tuberculous infections. This study investigated whether BCG alters all-cause infectious disease morbidity in healthy infants in a different high-mortality setting, and explored whether the changes are mediated via trained innate immunity. METHODS: This was an investigator-blind, randomised, controlled trial done at one hospital in Entebbe, Uganda. Infants who were born unwell (ie, those who were not well enough to be discharged directly home from the labour ward because they required medical intervention), with major congenital malformations, to mothers with HIV, into families with known or suspected tuberculosis, or for whom cord blood samples could not be taken, were excluded from the study. Any other infant well enough to be discharged directly from the labour ward was eligible for inclusion, with no limitation on gestational age or birthweight. Participants were recruited at birth and randomly assigned (1:1) to receive standard dose BCG 1331 (BCG-Danish) on the day of birth or at age 6 weeks (computer-generated randomisation, block sizes of 24, stratified by sex). Investigators and clinicians were masked to group assignment; parents were not masked. Participants were clinically followed up to age 10 weeks and contributed blood samples to one of three immunological substudies. The primary clinical outcome was physician-diagnosed non-tuberculous infectious disease incidence. Primary immunological outcomes were histone trimethylation at the promoter region of TNF, IL6, and IL1B; ex-vivo production of TNF, IL-6, IL-1ß, IL-10, and IFNγ after heterologous stimulation; and transferrin saturation and hepcidin levels. All outcomes were analysed in the modified intention-to-treat population of all randomly assigned participants except those whose for whom consent was withdrawn. This trial is registered with the International Standard Randomised Controlled Trial Number registry (#59683017). FINDINGS: Between Sept 25, 2014, and July 31, 2015, 560 participants were enrolled and randomly assigned to receive BCG at birth (n=280) or age 6 weeks (n=280). 12 participants assigned to receive BCG at birth and 11 participants assigned to receive BCG at age 6 weeks were withdrawn from the study by their parents shortly after randomisation and were not included in analyses. During the first 6 weeks of life before the infants in the delayed vaccination group received BCG vaccination, physician-diagnosed non-tuberculous infectious disease incidence was lower in infants in the BCG at birth group than in the delayed group (98 presentations in the BCG at birth group vs 129 in the delayed BCG group; hazard ratio [HR] 0·71 [95% CI 0·53-0·95], p=0·023). After BCG in the delayed group (ie, during the age 6-10 weeks follow-up), there was no significant difference in non-tuberculous infectious disease incidence between the groups (88 presentations vs 76 presentations; HR 1·10 [0·87-1·40], p=0·62). BCG at birth inhibited the increase in histone trimethylation at the TNF promoter in peripheral blood mononuclear cells occurring in the first 6 weeks of life. H3K4me3 geometric mean fold-increases were 3·1 times lower at the TNF promoter (p=0·018), 2·5 times lower at the IL6 promoter (p=0·20), and 3·1 times lower at the IL1B promoter (p=0·082) and H3K9me3 geometric mean fold-increases were 8·9 times lower at the TNF promoter (p=0·0046), 1·2 times lower at the IL6 promoter (p=0·75), and 4·6 times lower at the IL1B promoter (p=0·068), in BCG-vaccinated (BCG at birth group) versus BCG-naive (delayed BCG group) infants. No clear effect of BCG on ex-vivo production of TNF, IL-6, IL-1ß, IL-10, and IFNγ after heterologous stimulation, or transferrin saturation and hepcidin concentration, was detected (geometric mean ratios between 0·68 and 1·68; p≥0·038 for all comparisons). INTERPRETATION: BCG vaccination protects against non-tuberculous infectious disease during the neonatal period, in addition to having tuberculosis-specific effects. Prioritisation of BCG on the first day of life in high-mortality settings might have significant public-health benefits through reductions in all-cause infectious morbidity and mortality. FUNDING: Wellcome Trust. TRANSLATIONS: For the Luganda and Swahili translations of the abstract see Supplementary Materials section.


Assuntos
Vacina BCG , Doenças Transmissíveis , Imunidade Inata , Morbidade/tendências , Tuberculose/prevenção & controle , Vacina BCG/sangue , Vacina BCG/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/epidemiologia , Humanos , Incidência , Lactente , Recém-Nascido , Uganda/epidemiologia , Vacinação
2.
BMJ Open ; 11(2): e040427, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593769

RESUMO

INTRODUCTION: Drivers of lower vaccine efficacy and impaired vaccine-specific immune responses in low-income versus high-income countries, and in rural compared with urban settings, are not fully elucidated. Repeated exposure to and immunomodulation by parasite infections may be important. We focus on Plasmodium falciparum malaria, aiming to determine whether there are reversible effects of malaria infection on vaccine responses. METHODS AND ANALYSIS: We have designed a randomised, double-blind, placebo-controlled, parallel group trial of intermittent preventive malaria treatment versus placebo, to determine effects on vaccine response outcomes among school-going adolescents (9 to 17 years) from malaria-endemic rural areas of Jinja district (Uganda). Vaccines to be studied comprise BCG vaccine on day 'zero'; yellow fever, oral typhoid and human papilloma virus vaccines at week 4; and tetanus/diphtheria booster vaccine at week 28. Participants in the intermittent preventive malaria treatment arm will receive dihydroartemisinin/piperaquine (DP) dosed by weight, 1 month apart, prior to the first immunisation, followed by monthly treatment thereafter. We expect to enrol 640 adolescents. Primary outcomes are BCG-specific interferon-γ ELISpot responses 8 weeks after BCG immunisation and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. In secondary analyses, we will determine effects of monthly DP treatment (versus placebo) on correlates of protective immunity, on vaccine response waning, on whether there are differential effects on priming versus boosting immunisations, and on malaria infection prevalence. We will also conduct exploratory immunology assays among subsets of participants to further characterise effects of the intervention on vaccine responses. ETHICS AND DISSEMINATION: Ethics approval has been obtained from relevant Ugandan and UK ethics committees. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBER: Current Controlled Trials identifier: ISRCTN62041885.


Assuntos
Antimaláricos , Malária , Adolescente , Antimaláricos/uso terapêutico , Artemisininas , Combinação de Medicamentos , Humanos , Imunidade , Malária/tratamento farmacológico , Malária/prevenção & controle , Quinolinas , Ensaios Clínicos Controlados Aleatórios como Assunto , Uganda
3.
BMJ Open ; 11(2): e040430, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593770

RESUMO

INTRODUCTION: There is evidence that BCG immunisation may protect against unrelated infectious illnesses. This has led to the postulation that administering BCG before unrelated vaccines may enhance responses to these vaccines. This might also model effects of BCG on unrelated infections. METHODS AND ANALYSIS: To test this hypothesis, we have designed a randomised controlled trial of BCG versus no BCG immunisation to determine the effect of BCG on subsequent unrelated vaccines, among 300 adolescents (aged 13-17 years) from a Ugandan birth cohort. Our schedule will comprise three main immunisation days (week 0, week 4 and week 28): BCG (or no BCG) revaccination at week 0; yellow fever (YF-17D), oral typhoid (Ty21a) and human papillomavirus (HPV) prime at week 4; and HPV boost and tetanus/diphtheria (Td) boost at week 28. Primary outcomes are anti-YF-17D neutralising antibody titres, Salmonella typhi lipopolysaccharide-specific IgG concentration, IgG specific for L1-proteins of HPV-16/HPV-18 and tetanus and diphtheria toxoid-specific IgG concentration, all assessed at 4 weeks after immunisation with YF, Ty21a, HPV and Td, respectively. Secondary analyses will determine effects on correlates of protective immunity (where recognised correlates exist), on vaccine response waning and on whether there are differential effects on priming versus boosting immunisations. We will also conduct exploratory immunology assays among subsets of participants to further characterise effects of BCG revaccination on vaccine responses. Further analyses will assess which life course exposures influence vaccine responses in adolescence. ETHICS AND DISSEMINATION: Ethics approval has been obtained from relevant Ugandan and UK ethics committees. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBER: ISRCTN10482904.


Assuntos
Vacina BCG , Tétano , Adolescente , Humanos , Imunização Secundária , Ensaios Clínicos Controlados Aleatórios como Assunto , Uganda , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...