Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 136(2): 142-151, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37263830

RESUMO

Agrobacterium-mediated transformation (AMT) potentially has great advantages over other DNA introduction methods: e.g., long DNA and numerous recipient strains can be dealt with at a time merely by co-cultivation with donor Agrobacterium cells. However, AMT was applied only to several laboratory yeast strains, and has never been considered as a standard gene-introduction method for yeast species. To disseminate the AMT method in yeast species, it is necessary to develop versatile AMT plasmid vectors including shuttle type ones, which have been unavailable yet for yeasts. In this study, we constructed a series of AMT plasmid vectors that consist of replicative (shuttle)- and integrative-types and harbor a gene conferring resistance to either G418 or aureobasidin A for application to prototrophic yeast strains. The vectors were successfully applied to five industrial yeast strains belonging to Saccharomyces cerevisiae after a modification of a previous AMT protocol, i.e., simply inputting a smaller number of yeast cells to the co-cultivation than that in the previous protocol. The revised protocol enabled all five yeast strains to generate recombinant colonies not only at high efficiency using replicative-type vectors, but also readily at an efficiency around 10-5 using integrative one. Further modification of the protocol demonstrated AMT for multiple yeast strains at a time with less labor. Therefore, AMT would facilitate molecular genetic approaches to many yeast strains in basic and applied sciences.


Assuntos
Agrobacterium , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Agrobacterium/genética , Pão , Vetores Genéticos/genética , Plasmídeos/genética , DNA , Transformação Genética
2.
Front Microbiol ; 12: 620535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093458

RESUMO

Conjugal transfer is a major driving force of genetic exchange in eubacteria, and the system in IncP1-type broad-host-range plasmids transfers DNA even to eukaryotes and archaea in a process known as trans-kingdom conjugation (TKC). Although conjugation factors encoded on plasmids have been extensively analyzed, those on the donor chromosome have not. To identify the potential conjugation factor(s), a genome-wide survey on a comprehensive collection of Escherichia coli gene knockout mutants (Keio collection) as donors to Saccharomyces cerevisiae recipients was performed using a conjugal transfer system mediated by the type IV secretion system (T4SS) of the IncP1α plasmid. Out of 3,884 mutants, three mutants (ΔfrmR, ΔsufA, and ΔiscA) were isolated, which showed an increase by one order of magnitude in both E. coli-E. coli and E. coli-yeast conjugations without an increase in the mRNA accumulation level for the conjugation related genes examined. The double-knockout mutants for these genes (ΔfrmRΔsufA and ΔiscAΔfrmR) did not show synergistic effects on the conjugation efficiency, suggesting that these factors affect a common step in the conjugation machinery. The three mutants demonstrated increased conjugation efficiency in IncP1ß-type but not in IncN- and IncW-type broad-host-range plasmid transfers, and the homologous gene knockout mutants against the three genes in Agrobacterium tumefaciens also showed increased TKC efficiency. These results suggest the existence of a specific regulatory system in IncP1 plasmids that enables the control of conjugation efficiency in different hosts, which could be utilized for the development of donor strains as gene introduction tools into bacteria, eukaryotes, and archaea.

3.
Genes Cells ; 25(10): 663-674, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32799424

RESUMO

In DNA transfer via type IV secretion system (T4SS), relaxase enzyme releases linear ssDNA in donor cells and recircularizes in recipient cells. Using VirB/D4 T4SS, Agrobacterium cells can transfer an IncQ-type plasmid depending on Mob relaxase and a model T-DNA plasmid depending on VirD2 relaxase. Mobilization to Escherichia coli of the former plasmid is much more efficient than that of the latter, whereas an entirely reverse relationship is observed in transfer to yeast. These data suggest that either plasmid recircularization or conversion of ssDNA to dsDNA in the recipient bacterial cells is a rate-limiting step of the transfer. In this study, we examined involvement of exonuclease genes in the plasmid acceptability. By the VirD2-dependent T-DNA plasmid, E. coli sbcDΔ and sbcCΔ mutant strains produced threefold more exconjugants, and a sbcDΔ xseAΔ mutant strain yielded eightfold more exconjugants than their wild-type strain. In contrast to the enhancing effect on the VirD2-mediated transfer, the mutations exhibited a subtle effect on the Mob-mediated transfer. These results support our working hypothesis that VirD2 can transport its substrate ssDNA efficiently to recipient cells and that recipient nucleases degrade the ssDNA because VirD2 has some defect(s) in the circularization and completion of complementary DNA synthesis.


Assuntos
Transformação Bacteriana/genética , Sistemas de Secreção Tipo IV/metabolismo , Agrobacterium/genética , Bactérias/genética , Proteínas de Bactérias/genética , DNA/genética , DNA Bacteriano/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Exonucleases/genética , Exonucleases/metabolismo , Plasmídeos/genética , Sistemas de Secreção Tipo IV/genética
4.
Front Microbiol ; 10: 2939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969865

RESUMO

The conjugal transfer is a major driving force in the spread of antibiotic resistance genes. Nevertheless, an effective approach has not yet been developed to target conjugal transfer to prevent the acquisition of antibiotic resistance by this mechanism. This study aimed to identify potential targets for plasmid transfer blockade by isolating mutants defective in the completion of the acquisition of antibiotic resistance via conjugal transfer. We performed genome-wide screening by combining an IncP1α-type broad host range plasmid conjugation system with a comprehensive collection of Escherichia coli gene knockout mutants (Keio collection; 3884 mutants). We followed a six-step screening procedure to identify the mutants showing conjugation deficiency precisely. No mutants defective in the conjugal transfer were isolated, strongly suggesting that E. coli cannot escape from being a recipient organism for P1α plasmid transfer. However, several mutants with low viability were identified, as well as mutants defective in establishing resistance to chloramphenicol, which was used for transconjugant selection. These results suggest that developing drugs capable of inhibiting the establishment of antibiotic resistance is a better approach than attempting to prevent the conjugal transfer to block the spread of antibiotic resistance genes. Our screening system based on the IncP1α-type plasmid transfer can be extended to isolation of target genes for other drugs. This study could be the foundation for further research to understand its underlying molecular mechanism through functional analysis of the identified genes.

5.
Front Microbiol ; 9: 895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892270

RESUMO

In Agrobacterium-mediated transformation (AMT) of plants, a single-strand (ss) T-DNA covalently linked with a VirD2 protein moves through a bacterial type IV secretion channel called VirB/D4. This transport system originates from conjugal plasmid transfer systems of bacteria. The relaxase VirD2 and its equivalent protein Mob play essential roles in T-DNA transfer and mobilizable plasmid transfer, respectively. In this study, we attempted to transfer a model T-DNA plasmid, which contained no left border but had a right border sequence as an origin of transfer, and a mobilizable plasmid through the VirB/D4 apparatus to Escherichia coli, Agrobacterium and yeast to compare VirD2-driven transfer with Mob-driven one. AMT was successfully achieved by both types of transfer to the three recipient organisms. VirD2-driven AMT of the two bacteria was less efficient than Mob-driven AMT. In contrast, AMT of yeast guided by VirD2 was more efficient than that by Mob. Plasmid DNAs recovered from the VirD2-driven AMT colonies showed the original plasmid structure. These data indicate that VirD2 retains most of its important functions in recipient bacterial cells, but has largely adapted to eukaryotes rather than bacteria. The high AMT efficiency of yeast suggests that VirD2 can also efficiently bring ssDNA to recipient bacterial cells but is inferior to Mob in some process leading to the formation of double-stranded circular DNA in bacteria. This study also revealed that the recipient recA gene was significantly involved in VirD2-dependent AMT, but only partially involved in Mob-dependent AMT. The apparent difference in the recA gene requirement between the two types of AMT suggests that VirD2 is worse at re-circularization to complete complementary DNA synthesis than Mob in bacteria.

6.
BMC Microbiol ; 16: 58, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27038795

RESUMO

BACKGROUND: Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. RESULTS: By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. CONCLUSIONS: RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high-efficiency AMT, possibly by avoiding congestion. The involvement of the cell wall synthesis regulator SMI1 remains to be elucidated.


Assuntos
Agrobacterium/genética , DNA Bacteriano/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transformação Genética , Agrobacterium/crescimento & desenvolvimento , Parede Celular/metabolismo , DNA Helicases/genética , Biblioteca Gênica , Proteínas de Membrana/genética , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
7.
Genes Cells ; 17(7): 597-610, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22686249

RESUMO

Agrobacterium strains containing a Ti plasmid can transfer T-DNA not only to plants but also to fungi, including the yeast Saccharomyces cerevisiae. However, no Agrobacterium strain harboring an Ri plasmid has been evaluated in fungal transformation. Some Ri plasmids have GALLS , instead of virE1 and virE2. GALLS protein can functionally substitute in plant transformation for a structurally different protein VirE2. In this study, we compared the yeast transformation ability among Agrobacterium donors: a strain containing a Ti plasmid, strains harboring either an agropine-type or a mikimopine-type Ri plasmid, and a strain having a modified Ri plasmid supplemented with a Ti plasmid type virE operon. Agrobacterium strains possessing GALLS transformed yeast cells far less efficiently than the strain containing virE operon. Production of GALLS in recipient yeast cells improved the yeast transformation mediated by an Agrobacterium strain lacking neither GALLS nor virE operon. A reporter assay to detect mobilization of the proteins fused with Cre recombinase revealed that VirE2 protein is much more abundant in yeast cells than GALLS. Based on these results, we concluded that the low yeast transformability mediated by Agrobacterium strains having the Ri plasmid is because of low amount of mobilized GALLS in yeast cells.


Assuntos
Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas de Bactérias/genética , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transformação Genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ordem dos Genes , Óperon/genética , Mutação Puntual , Regiões Promotoras Genéticas , Transporte Proteico
8.
J Bacteriol ; 191(14): 4656-66, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19447904

RESUMO

Stability of plant tumor-inducing (Ti) plasmids differs among strains. A high level of stability prevents basic and applied studies including the development of useful strains. The nopaline type Ti plasmid pTiC58 significantly reduces the transconjugant efficiency for incoming incompatible plasmids relative to the other type, such as octopine-type plasmids. In this study we identified a region that increases the incompatibility and stability of the plasmid. This region was located on a 4.3-kbp segment about 38 kbp downstream of the replication locus, repABC. We named two open reading frames in the segment, ietA and ietS, both of which were essential for the high level of incompatibility and stability. Plasmid stabilization by ietAS was accomplished by a toxin-antitoxin (TA) mechanism, where IetS is the toxin and IetA is the antitoxin. A database search revealed that putative IetA and IetS proteins are highly similar to AAA-ATPases and subtilisin-like serine proteases, respectively. Amino acid substitution experiments in each of the highly conserved characteristic residues, in both putative enzymes, suggested that the protease activity is essential and that ATP binding activity is important for the operation of the TA system. The ietAS-containing repABC plasmids expelled Ti plasmids even in strains which were tolerant to conventional Ti-curing treatments.


Assuntos
Adenosina Trifosfatases/metabolismo , Agrobacterium tumefaciens/genética , Antitoxinas , Toxinas Bacterianas/genética , Plasmídeos , Serina Endopeptidases/metabolismo , Adenosina Trifosfatases/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Ordem dos Genes , Genes Bacterianos , Instabilidade Genômica , Viabilidade Microbiana , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Plantas/microbiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética
9.
Appl Environ Microbiol ; 75(7): 1845-51, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19181833

RESUMO

Agrobacterium-mediated plant transformation has been used widely, but there are plants that are recalcitrant to this type of transformation. This transformation method uses bacterial strains harboring a modified tumor-inducing (Ti) plasmid that lacks the transfer DNA (T-DNA) region (disarmed Ti plasmid). It is desirable to develop strains that can broaden the host range. A large number of Agrobacterium strains have not been tested yet to determine whether they can be used in transformation. In order to improve the disarming method and to obtain strains disarmed and ready for the plant transformation test, we developed a simple scheme to make certain Ti plasmids disarmed and simultaneously maintainable in Escherichia coli and mobilizable between E. coli and Agrobacterium. To establish the scheme in nopaline-type Ti plasmids, a neighboring segment to the left of the left border sequence, a neighboring segment to the right of the right border sequence of pTi-SAKURA, a cassette harboring the pSC101 replication gene between these two segments, the broad-host-range IncP-type oriT, and the gentamicin resistance gene were inserted into a suicide-type sacB-containing vector. Replacement of T-DNA with the cassette in pTiC58 and pTi-SAKURA occurred at a high frequency and with high accuracy when the tool plasmid was used. We confirmed that there was stable maintenance of the modified Ti plasmids in E. coli strain S17-1lambdapir and conjugal transfer from E. coli to Ti-less Agrobacterium strains and that the reconstituted Agrobacterium strains were competent to transfer DNA into plant cells. As the modified plasmid delivery system was simple and efficient, conversion of strains to the disarmed type was easy and should be applicable in studies to screen for useful strains.


Assuntos
Escherichia coli/genética , Vetores Genéticos , Biologia Molecular/métodos , Plasmídeos Indutores de Tumores em Plantas , Rhizobium/genética , Transformação Genética , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...