Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
J Virol ; 98(7): e0049824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953667

RESUMO

Coxsackievirus B3 (CVB3) encodes proteinases that are essential for processing of the translated viral polyprotein. Viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. While some host protein substrates of the CVB3 3C and 2A cysteine proteinases have been identified, the full repertoire of targets is not known. Here, we utilize an unbiased quantitative proteomics-based approach termed terminal amine isotopic labeling of substrates (TAILS) to conduct a global analysis of CVB3 protease-generated N-terminal peptides in both human HeLa and mouse cardiomyocyte (HL-1) cell lines infected with CVB3. We identified >800 proteins that are cleaved in CVB3-infected HeLa and HL-1 cells including the viral polyprotein, known substrates of viral 3C proteinase such as PABP, DDX58, and HNRNPs M, K, and D and novel cellular proteins. Network and GO-term analysis showed an enrichment in biological processes including immune response and activation, RNA processing, and lipid metabolism. We validated a subset of candidate substrates that are cleaved under CVB3 infection and some are direct targets of 3C proteinase in vitro. Moreover, depletion of a subset of TAILS-identified target proteins decreased viral yield. Characterization of two target proteins showed that expression of 3Cpro-targeted cleaved fragments of emerin and aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 modulated autophagy and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, respectively. The comprehensive identification of host proteins targeted during virus infection provides insights into the cellular pathways manipulated to facilitate infection. IMPORTANCE: RNA viruses encode proteases that are responsible for processing viral proteins into their mature form. Viral proteases also target and cleave host cellular proteins; however, the full catalog of these target proteins is incomplete. We use a technique called terminal amine isotopic labeling of substrates (TAILS), an N-terminomics to identify host proteins that are cleaved under virus infection. We identify hundreds of cellular proteins that are cleaved under infection, some of which are targeted directly by viral protease. Revealing these target proteins provides insights into the host cellular pathways and antiviral signaling factors that are modulated to promote virus infection and potentially leading to virus-induced pathogenesis.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B , Proteólise , Enterovirus Humano B/metabolismo , Humanos , Camundongos , Animais , Células HeLa , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/metabolismo , Proteínas Virais/metabolismo , Proteômica/métodos , Interações Hospedeiro-Patógeno , Proteases Virais 3C/metabolismo , Linhagem Celular , Proteases Virais/metabolismo , Poliproteínas/metabolismo
2.
ACS Appl Mater Interfaces ; 16(29): 38631-38644, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980701

RESUMO

Achievement of a stable surface coating with long-term resistance to biofilm formation remains a challenge. Catechol-based polymerization chemistry and surface deposition are used as tools for surface modification of diverse materials. However, the control of surface deposition of the coating, surface coverage, coating properties, and long-term protection against biofilm formation remain to be solved. We report a new approach based on supramolecular assembly to generate long-acting antibiofilm coating. Here, we utilized catechol chemistry in combination with low molecular weight amphiphilic polymers for the generation of such coatings. Screening studies with diverse low molecular weight (LMW) polymers and different catechols are utilized to identify lead compositions, which resulted in a thick coating with high surface coverage, smoothness, and antibiofilm activity. We have identified that small supramolecular assemblies (∼10 nm) formed from a combination of polydopamine and LMW poly(N-vinyl caprolactam) (PVCL) resulted in relatively thick coating (∼300 nm) with excellent surface coverage in comparison to other polymers and catechol combinations. The coating properties, such as thickness (10-300 nm) and surface hydrophilicity (with water contact angle: 20-60°), are readily controlled. The optimal coating composition showed excellent antibiofilm properties with long-term (>28 days) antibiofilm activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains. We further utilized the combination of optimal binary coating with silver to generate a coating with sustained release of silver ions, resulting in killing both adhered and planktonic bacteria and preventing long-term surface bacterial colonization. The new coating method utilizing LMW polymers opens a new avenue for the development of a novel class of thick, long-acting antibiofilm coatings.


Assuntos
Biofilmes , Catecóis , Polímeros , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Catecóis/química , Catecóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Peso Molecular , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia
3.
Shock ; 61(6): 848-854, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662595

RESUMO

ABSTRACT: Background: Inorganic polyphosphate (polyP) is a procoagulant polyanion. We assessed the impact of polyP inhibition on thrombin generation after trauma using the novel polyP antagonists, macromolecular polyanion inhibitor 8 (MPI 8), and universal heparin reversal agent 8 (UHRA-8). Methods: Plasma thrombin generation (calibrated automated thrombogram, CAT), in 56 trauma patients and 39 controls +/- MPI 8 and UHRA-8 (50 µg/mL), was expressed as lag time (LT, minutes), peak height (PH, nM), and time to peak (ttPeak, minutes), with change in LT (ΔLT) and change in ttPeak (ΔttPeak) quantified. Results expressed in median and quartiles [Q1, Q3], Wilcoxon matched-pairs testing, P < 0.05 significant. Results: Trauma patients had greater baseline PH than controls (182.9 [121.0, 255.2]; 120.5 [62.1, 174.8], P < 0.001). MPI 8 treatment prolonged LT and ttPeak in trauma (7.20 [5.88, 8.75]; 6.46 [5.45, 8.93], P = 0.020; 11.28 [8.96, 13.14]; 11.00 [8.95, 12.94], P = 0.029) and controls (7.67 [6.67, 10.50]; 6.33 [5.33, 8.00], P < 0.001; 13.33 [11.67, 15.33]; 11.67 [10.33, 13.33], P < 0.001). UHRA-8 treatment prolonged LT and ttPeak and decreased PH in trauma (9.09 [7.45, 11.33]; 6.46 [5.45, 8.93]; 14.02 [11.78, 17.08]; 11.00 [8.95, 12.94]; 117.4 [74.5, 178.6]; 182.9 [121.0, 255.2]) and controls (9.83 [8.00, 12.33]; 6.33 [5.33, 8.00]; 16.67 [14.33, 20.00]; 11.67 [10.33, 13.33]; 55.3 [30.2, 95.9]; 120.5 [62.1, 174.8]), all P < 0.001. Inhibitor effects were greater for controls (greater ΔLT and ΔttPeak for both inhibitors, P < 0.001). Conclusion: PolyP inhibition attenuates thrombin generation, though to a lesser degree in trauma than in controls, suggesting that polyP contributes to accelerated thrombin generation after trauma.


Assuntos
Polifosfatos , Trombina , Ferimentos e Lesões , Humanos , Trombina/metabolismo , Masculino , Adulto , Ferimentos e Lesões/sangue , Ferimentos e Lesões/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Ácidos Nucleicos/sangue
4.
ACS Appl Mater Interfaces ; 16(13): 15893-15906, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512725

RESUMO

Polymer-mediated cell surface engineering can be a powerful tool to modify the cell's biological behavior, but a simple ligation strategy must be identified. This manuscript assessed the use of transglutamination as a versatile and adaptable approach for cell surface engineering in various cellular models relevant to biomedical applications. This enzymatic approach was evaluated for its feasibility and potential for conjugating polymers to diverse cell surfaces and its biological effects. Transglutaminase-mediated ligation was successfully performed at temperatures ranging from 4 to 37 °C in as quickly as 30 min, while maintaining biocompatibility and preserving cell viability. This approach was successfully applied to nine different cell surfaces (including adherent cells and suspension cells) by optimizing the enzyme source (guinea pig liver vs microbial), buffer compositions, and incubation conditions. Finally, polymer-mediated cell surface engineering using transglutaminase exhibited immunocamouflage abilities for endothelial cells, T cells, and red blood cells by preventing the recognition of cell surface proteins by antibodies. Employing transglutaminase in polymer-mediated cell surface engineering is a promising approach to maximize its application in cell therapy and other biomedical applications.


Assuntos
Polímeros , Transglutaminases , Animais , Cobaias , Polímeros/metabolismo , Transglutaminases/metabolismo , Células Endoteliais/metabolismo , Membrana Celular/metabolismo , Engenharia Celular
5.
Nat Commun ; 15(1): 2795, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555382

RESUMO

ABO blood group compatibility restrictions present the first barrier to donor-recipient matching in kidney transplantation. Here, we present the use of two enzymes, FpGalNAc deacetylase and FpGalactosaminidase, from the bacterium Flavonifractor plautii to enzymatically convert blood group A antigens from the renal vasculature of human kidneys to 'universal' O-type. Using normothermic machine perfusion (NMP) and hypothermic machine perfusion (HMP) strategies, we demonstrate blood group A antigen loss of approximately 80% in as little as 2 h NMP and HMP. Furthermore, we show that treated kidneys do not bind circulating anti-A antibodies in an ex vivo model of ABO-incompatible transplantation and do not activate the classical complement pathway. This strategy presents a solution to the donor organ shortage crisis with the potential for direct clinical translation to reduce waiting times for patients with end stage renal disease.


Assuntos
Transplante de Rim , Rim , Humanos , Rim/fisiologia , Perfusão , Sistema ABO de Grupos Sanguíneos
6.
Adv Healthc Mater ; : e2400108, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537246

RESUMO

Thrombosis, the formation of blood clots within a blood vessel, can lead to severe complications including pulmonary embolism, cardiac arrest, and stroke. The most widely administered class of anticoagulants is heparin-based anticoagulants such as unfractionated heparin, low-molecular weight heparins (LMWHs), and fondaparinux. Protamine is the only FDA-approved heparin antidote. Protamine has limited efficacy neutralizing LMWHs and no reversal activity against fondaparinux. The use of protamine can lead to complications, including excessive bleeding, hypotension, and hypersensitivity, and has narrow therapeutic window. In this work, a new concept in the design of a universal heparin antidote: switchable protonation of cationic ligands, is presented. A library of macromolecular polyanion inhibitors (MPIs) is synthesized and screened to identify molecules that can neutralize all heparins with high selectivity and reduced toxicity. MPIs are developed by assembling cationic binding groups possessing switchable protonation states onto a polymer scaffold. By strategically selecting the identity and modulating the density of cationic binding groups on the polymer scaffold, a superior universal heparin reversal agent is developed with improved heparin-binding activity and increased hemocompatibility profiles leading to minimal effect on hemostasis. The activity of this heparin antidote is demonstrated using in vitro and in vivo studies.

8.
Sci Rep ; 13(1): 21915, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38081916

RESUMO

Cell-based iron overload models provide tremendous utility for the investigations into the pathogenesis of different diseases as well as assessing efficacy of various therapeutic strategies. In the literature, establishing such models vary widely with regards to cell lines, iron source, iron treatment conditions and duration. Due to this diversity, researchers reported significant differences in the measured outcomes, either in cellular function or response to a stimulus. Herein, we report the process required to establish an iron overload HepG2 cell model to achieve a consistent and reproducible results such that the literature can strive towards a consensus. Iron loading in cells was achieved with 50 µM of iron every 24 h for 2 days, followed by an additional 24 h of maintenance in fresh media. We demonstrated that iron overloaded cells had significantly increased ROS generation, labile and total iron whilst having various cellular functions resemble cells without iron overload. The present report addresses key pitfalls with regards to the lack of consensus currently present in the literature.


Assuntos
Sobrecarga de Ferro , Humanos , Células Hep G2 , Espécies Reativas de Oxigênio/metabolismo , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo
9.
Nat Commun ; 14(1): 4875, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573353

RESUMO

Clinical use of intraoperative auto-transfusion requires the removal of platelets and plasma proteins due to pump-based suction and water-soluble anticoagulant administration, which causes dilutional coagulopathy. Herein, we develop a carboxylated and sulfonated heparin-mimetic polymer-modified sponge with spontaneous blood adsorption and instantaneous anticoagulation. We find that intrinsic coagulation factors, especially XI, are inactivated by adsorption to the sponge surface, while inactivation of thrombin in the sponge-treated plasma effectively inhibits the common coagulation pathway. We show whole blood auto-transfusion in trauma-induced hemorrhage, benefiting from the multiple inhibitory effects of the sponge on coagulation enzymes and calcium depletion. We demonstrate that the transfusion of collected blood favors faster recovery of hemostasis compared to traditional heparinized blood in a rabbit model. Our work not only develops a safe and convenient approach for whole blood auto-transfusion, but also provides the mechanism of action of self-anticoagulant heparin-mimetic polymer-modified surfaces.


Assuntos
Anticoagulantes , Transtornos da Coagulação Sanguínea , Animais , Coelhos , Anticoagulantes/farmacologia , Fatores de Coagulação Sanguínea/metabolismo , Hemostasia , Heparina/farmacologia , Hemorragia/etiologia , Polímeros/farmacologia
10.
Biomedicines ; 11(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37509568

RESUMO

Despite the risk of developing catheter-associated urinary tract infections (CAUTI), catheter reuse is common among people with spinal cord injury (SCI). This study examined the microbiological burden and catheter surface changes associated with short-term reuse. Ten individuals with chronic SCI reused their catheters over 3 days. Urine and catheter swab cultures were collected daily for analysis. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses were used to assess catheter surface changes. Catheter swab cultures showed no growth after 48 h (47.8%), skin flora (28.9%), mixed flora (17.8%), or bacterial growth (5.5%). Asymptomatic bacteriuria was found for most participants at baseline (n = 9) and all at follow-up (n = 10). Urine samples contained Escherichia coli (58%), Klebsiella pneumoniae (30%), Enterococcus faecalis (26%), Acinetobacter calcoaceticus-baumannii (10%), Pseudomonas aeruginosa (6%) or Proteus vulgaris (2%). Most urine cultures showed resistance to one or more antibiotics (62%). SEM images demonstrated structural damage, biofilm and/or bacteria on all reused catheter surfaces. XPS analyses also confirmed the deposition of bacterial biofilm on reused catheters. Catheter surface changes and the presence of antibiotic-resistant bacteria were evident following short-term reuse, which may increase susceptibility to CAUTI in individuals with SCI despite asymptomatic bacteriuria.

11.
Adv Fiber Mater ; : 1-43, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37361105

RESUMO

Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs.

12.
Semin Thromb Hemost ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37192652

RESUMO

The contact pathway of blood clotting has received intense interest in recent years as studies have linked it to thrombosis, inflammation, and innate immunity. Because the contact pathway plays little to no role in normal hemostasis, it has emerged as a potential target for safer thromboprotection, relative to currently approved antithrombotic drugs which all target the final common pathway of blood clotting. Research since the mid-2000s has identified polyphosphate, DNA, and RNA as important triggers of the contact pathway with roles in thrombosis, although these molecules also modulate blood clotting and inflammation via mechanisms other than the contact pathway of the clotting cascade. The most significant source of extracellular DNA in many disease settings is in the form of neutrophil extracellular traps (NETs), which have been shown to contribute to incidence and severity of thrombosis. This review summarizes known roles of extracellular polyphosphate and nucleic acids in thrombosis, with an emphasis on novel agents under current development that target the prothrombotic activities of polyphosphate and NETs.

13.
Nat Commun ; 14(1): 2177, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100783

RESUMO

Current treatments to prevent thrombosis, namely anticoagulants and platelets antagonists, remain complicated by the persistent risk of bleeding. Improved therapeutic strategies that diminish this risk would have a huge clinical impact. Antithrombotic agents that neutralize and inhibit polyphosphate (polyP) can be a powerful approach towards such a goal. Here, we report a design concept towards polyP inhibition, termed macromolecular polyanion inhibitors (MPI), with high binding affinity and specificity. Lead antithrombotic candidates are identified through a library screening of molecules which possess low charge density at physiological pH but which increase their charge upon binding to polyP, providing a smart way to enhance their activity and selectivity. The lead MPI candidates demonstrates antithrombotic activity in mouse models of thrombosis, does not give rise to bleeding, and is well tolerated in mice even at very high doses. The developed inhibitor is anticipated to open avenues in thrombosis prevention without bleeding risk, a challenge not addressed by current therapies.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Trombose , Camundongos , Animais , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Ligantes , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Anticoagulantes/efeitos adversos , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Hemorragia/tratamento farmacológico , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico
14.
Pathogens ; 12(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111490

RESUMO

Murine sepsis models are typically polymicrobial, and are associated with high mortality. We aimed to develop a high-throughput murine model that mimics a slow-paced, monomicrobial sepsis originating from the urinary tract. A total of 23 male C57Bl/6 mice underwent percutaneous insertion of a 4 mm catheter into the bladder using an ultrasound-guided method, previously developed by our group. The following day, Proteus mirabilis (PM) was introduced percutaneously in the bladder in three groups: g1-50 µL 1 × 108 CFU/mL solution (n = 10); g2-50 µL 1 × 107 CFU/mL solution (n = 10); and g3 (sham mice)-50 µL sterile saline (n = 3). On day 4, mice were sacrificed. The number of planktonic bacteria in urine, adherent to catheters, and adherent to/invaded into the bladder and spleen was assessed. Cell-free DNA, D-dimer, thrombin-antithrombin complex (TAT), and 32 pro-/anti-inflammatory cytokines/chemokines were quantified in the blood. All mice survived the 4 day postinterventional period. Mean weight loss was 11% in g1, 9% in g2, and 3% in the control mice. Mean urine CFU counts were highest in group 1. All catheters showed high catheter-adhered bacterial counts. Of the infected mice, 17/20 had CFU counts in the splenic tissue, indicating septicemia. Plasma levels of cell-free DNA, D-dimer, and the proinflammatory cytokines IFN-γ, IL-6, IP-10, MIG, and G-CSF were significantly elevated in infected mice versus controls. We present a reproducible, monomicrobial murine model of urosepsis that does not lead to rapid deterioration and death, and is useful for studying prolonged urosepsis.

15.
J Thromb Haemost ; 21(7): 1714-1723, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062523

RESUMO

Protamine, a highly basic protein isolated from salmon sperm, is the only clinically available agent to reverse the anticoagulation of unfractionated heparin. Following intravenous administration, protamine binds to heparin in a nonspecific electrostatic interaction to reverse its anticoagulant effects. In clinical use, protamine is routinely administered to reverse high-dose heparin anticoagulation in cardiovascular procedures, including cardiac surgery with cardiopulmonary bypass. Despite the lack of supportive evidence regarding protamine's effectiveness to reverse low-molecular-weight heparin, it is recommended in guidelines with low-quality evidence. Different dosing strategies have been reported for reversing heparin in cardiac surgical patients based on empiric dosing, pharmacokinetics, or point-of-care measurements of heparin levels. Protamine administration is associated with a spectrum of adverse reactions that range from vasodilation to life-threatening cardiopulmonary dysfunction and shock. The life-threatening responses appear to be hypersensitivity reactions due to immunoglobulin E and/or immunoglobulin G antibodies. However, protamine and heparin-protamine complexes can activate complement inflammatory pathways and inhibit other coagulation factors. Although alternative agents for reversing heparin are not currently available for clinical use, additional research continues evaluating novel therapeutic approaches.


Assuntos
Heparina , Protaminas , Humanos , Masculino , Anticoagulantes/uso terapêutico , Antagonistas de Heparina/efeitos adversos , Sêmen , Ponte Cardiopulmonar/efeitos adversos
16.
ACS Nanosci Au ; 3(1): 67-83, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36820095

RESUMO

A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic-aqueous mixture. Using a screening approach, we have identified a combination of the organic-aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer-silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (>3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (>99.999%) against difficult-to-kill bacteria (Proteus mirabilis) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, in vivo. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.

17.
ACS Chem Neurosci ; 14(4): 677-688, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36717083

RESUMO

The objective of this study was to establish if polyglycerols with sulfate or sialic acid functional groups interact with high mobility group box 1 (HMGB1), and if so, which polyglycerol could prevent loss of morphological plasticity in excitatory neurons in the hippocampus. Considering that HMGB1 binds to heparan sulfate and that heparan sulfate has structural similarities with dendritic polyglycerol sulfates (dPGS), we performed the experiments to show if polyglycerols can mimic heparin functions by addressing the following questions: (1) do dendritic and linear polyglycerols interact with the alarmin molecule HMGB1? (2) Does dPGS interaction with HMGB1 influence the redox status of HMGB1? (3) Can dPGS prevent the loss of dendritic spines in organotypic cultures challenged with lipopolysaccharide (LPS)? LPS plays a critical role in infections with Gram-negative bacteria and is commonly used to test candidate therapeutic agents for inflammation and endotoxemia. Pathologically high LPS concentrations and other stressful stimuli cause HMGB1 release and post-translational modifications. We hypothesized that (i) electrostatic interactions of hyperbranched and linear polysulfated polyglycerols with HMGB1 will likely involve sites similar to those of heparan sulfate. (ii) dPGS can normalize HMGB1 compartmentalization in microglia exposed to LPS and prevent dendritic spine loss in the excitatory hippocampal neurons. We performed immunocytochemistry and biochemical analyses combined with confocal microscopy to determine cellular and extracellular locations of HMGB1 and morphological plasticity. Our results suggest that dPGS interacts with HMGB1 similarly to heparan sulfate. Hyperbranched dPGS and linear sulfated polymers prevent dendritic spine loss in hippocampal excitatory neurons. MS/MS analyses reveal that dPGS-HMGB1 interactions result in fully oxidized HMGB1 at critical cysteine residues (Cys23, Cys45, and Cys106). Triply oxidized HMGB1 leads to the loss of its pro-inflammatory action and could participate in dPGS-mediated spine loss prevention. LPG-Sia exposure to HMGB1 results in the oxidation of Cys23 and Cys106 but does not normalize spine density.


Assuntos
Proteína HMGB1 , Sulfatos , Sulfatos/química , Lipopolissacarídeos/farmacologia , Espectrometria de Massas em Tandem , Polímeros/farmacologia , Polímeros/química , Neurônios
18.
Perit Dial Int ; 43(4): 324-333, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36588412

RESUMO

BACKGROUND: Small hyperbranched polyglycerol (HPG) has been recently of interest for peritoneal dialysis, but its pharmacokinetics is barely understood. This study investigated the absorption, distribution and excretion of 1 and 3 kDa HPG. METHODS: Rats (naive, 5/6 nephrectomy (5/6 Nx) or bilateral nephrectomy (BNx)) received a single dose of 3H-labelled HPG-containing solutions intraperitoneally (IP) or intravenously (IV). Radioactivity in tissues, urine and faeces was counted using a scintillation counter. Pharmacokinetic parameters were calculated using WinNonlin software. RESULTS: During 8-h dwell with IP injected therapeutic dose of HPG-based hypertonic solutions, the plasma levels of 1 kDa HPG reached the peak at 2 h, followed by a decrease to the end, whereas 3 kDa HPG increased for the duration of the 8 h. At the experimental endpoint, the distribution of both sizes of HPG in major organs was minimal, whereas most of 1 kDa HPG was excreted via urine, and of 3 kDa remained in peritoneal cavity. The elimination of both 1 and 3 kDa HPG after either IP or IV administration was significantly delayed by 5/6 Nx or BNx as compared to naive controls. Further, 24-h faecal excretion of HPG (3 kDa) was <5% of injected dose that was not different between healthy and BNx rats. CONCLUSION: Data suggest size-dependent peritoneal absorption of osmotic HPG that are not specifically absorbed by any of the organs tested. The clearance of small HPG mainly depends on kidney excretion, implying the risk of HPG accumulation in patients with end-stage kidney disease who receive maintenance dialysis with HPG.


Assuntos
Diálise Peritoneal , Ratos , Animais , Polímeros , Cavidade Peritoneal , Glicerol/farmacocinética
19.
ACS Biomater Sci Eng ; 9(1): 329-339, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36516234

RESUMO

Bacteria and viruses can adhere onto diverse surfaces and be transmitted in multiple ways. A bifunctional coating that integrates both antibacterial and antiviral activities is a promising approach to mitigate bacterial and viral infections arising from a contaminated surface. However, current coating approaches encounter a slow reaction, limited activity against diverse bacteria or viruses, short-term activity, difficulty in scaling-up, and poor adaptation to diverse material surfaces. Here, we report a new one-step strategy for the development of a polydopamine-based nonfouling antibacterial and antiviral coating by the codeposition of various components. The in situ formed nanosilver in the presence of polydopamine was incorporated into the coating and served as both antibacterial and antiviral agents. In addition, the coassembly of polydopamine and a nonfouling hydrophilic polymer was constructed to prevent the adhesion of bacteria and viruses on the coating. The coating was prepared on model surfaces and thoroughly characterized using various surface analytical techniques. The coating exhibited strong antifouling properties with a reduction of nonspecific protein adsorption up to 90%. The coating was tested against both Gram-positive and Gram-negative bacteria and showed long-term antibacterial effectiveness, which correlated with the composition of the coating. The antiviral activity of the coating was evaluated against human coronavirus 229E. A possible mechanism of action of the coating was proposed. We anticipate that the optimized coating will have applications in the development of infection prevention devices and surfaces.


Assuntos
Incrustação Biológica , Dopamina , Humanos , Dopamina/farmacologia , Incrustação Biológica/prevenção & controle , Antibacterianos/farmacologia , Antivirais/farmacologia , Aderência Bacteriana , Materiais Revestidos Biocompatíveis/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Polímeros/farmacologia , Bactérias
20.
Cells ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497111

RESUMO

3-D cell cultures are being increasingly used as in vitro models are capable of better mimicry of in vivo tissues, particularly in drug screenings where mass transfer limitations can affect the cancer biology and response to drugs. Three-dimensional microscopy techniques, such as confocal and multiphoton microscopy, have been used to elucidate data from 3-D cell cultures and whole organs, but their reach inside the 3-D tissues is restrained by the light scattering of the tissues, limiting their effective reach to 100-200 µm, which is simply not enough. Tissue clearing protocols, developed mostly for larger specimens usually involve multiple steps of viscous liquid submersion, and are not easily adaptable for much smaller spheroids and organoids. In this work, we have developed a novel tissue clearing solution tailored for small spheroids and organoids. Our tissue clearing protocol, called HyClear, uses a mixture of DMSO, HPG and urea to allow for one-step tissue clearing of spheroids and organoids, and is compatible with high-throughput screening studies due to its speed and simplicity. We have shown that our tissue clearing agent is superior to many of the commonly used tissue clearing agents and allows for elucidating better quality data from drug screening experiments.


Assuntos
Microscopia , Organoides , Ensaios de Triagem em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...