Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27401, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463799

RESUMO

For several years, fish smoking has been the widely adopted processing method among artisanal fish smokers located along the coastal zones in many parts of West Africa including Ghana. However, several issues pertaining to biochemical and microbiological contaminants still remain, mainly because of the suboptimal, unhygienic fish handling during the processing. To help curtail the problem, we developed and implemented a simple good manufacturing practice (GMP) system for experimentation at two local fish smoking facilities (Facility A, FA; Facility B, FB) to assess the effectiveness for improving the quality of smoked fish. The implementation of GMP did not affect the physical properties of the smoked fish but improved the peroxide value, total volatile base nitrogen, polyaromantic hydrocarbons and histamine levels. The total aerobic counts decreased from 3.96 ± 0.12 cfu/g to 1.52 ± 0.28 cfu/g (FA) or from 4.10 ± 0.2 cfu/g to 1.85 ± 0.85 cfu/g, (FB). The coliforms and Escherichia coli decreased respectively from 1.69 ± 0.12 cfu/g and 1.15 ± 0.21 cfu/g (FA) and from 1.74 ± 0.37 cfu/g and 1.24 ± 0.37 cfu/g, (FB) to below detection (no observed colony) after introducing the single use of potable water, use of smoking oven and fish core temperature of 108.1 ± 7.5 °C and 82.5 ± 3.9 °C, respectively for 2 h, wearing of safety apparels, drying and cooling of smoked fish under nets, and the use of waste disposal bins. The results show that sensitization and training of fish smokers in GMP may be relevant for improving the microbial and overall quality of smoked fish.

2.
J Food Sci ; 88(9): 3681-3693, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37548622

RESUMO

The influence of sprouting on tiger nut's (TN) nutritional, functional, and phytochemical quality was examined, and the flour used for bread making to evaluate the feasibility as a functional ingredient. TN was sprouted and sampled at 3 days intervals for 12 days, dried and milled into flour and analyzed. Subsequently, 25% of wheat flour (WF) was replaced with the 9 days-sprouted TN flour for bread. Sprouting for 9 days increased the protein content from 9.19 ± 0.04 to 9.79 ± 0.15 g/100 g dry matter (DM), fiber from 6.75 ± 0.16 to 9.27 ± 0.44 g/100 g DM, and ash from 2.34 ± 0.10 to 2.70 ± 0.06 g/100 g DM but decreased fat content from 26.10 ± 0.18 to 23.18 ± 0.43 g/100 g DM and soluble sugar from 33.13 ± 1.25 to 23.75 ± 1.44 °Bx. We observed increases in the polyphenols (94.16 ± 6.43-214.23 ± 6.98 mg GAE/100 g) and ascorbic acid (26.66 ± 0.17-65.13 ± 0.19 mg AE/100 g) and decreases in the cyanogenic glycosides (273.79 ± 0.37-231.54 ± 3.53 mg/100 g) and oxalates (19.04 ± 1.14-5.65 ± 0.93 mg/100 g) contents. Sprouting decreased the particle size and increased the water retention and swelling power of TN flour. WF bread was described as stretchy, sweet, and creamy, whereas sprouted TN bread was brown, nutty, and wheat-like. Consumer acceptance for the sprouted TN bread was comparable to WF bread, showing the possible application in bread making. PRACTICAL APPLICATION: The outcome of the study could help to exploit the nutri-functional and phytochemical benefits of sprouted TN in the baking industry for producing acceptable products. This would enhance the utility of TN for food in regions where TNs grows.


Assuntos
Pão , Farinha , Triticum/química , Nutrientes , Compostos Fitoquímicos
3.
Int J Food Sci ; 2023: 7892739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36704447

RESUMO

Tiger nut is a valuable source of fiber, lipids, minerals, and carbohydrates. However, avenues for incorporating tiger nuts into food remain underexplored, especially in several tropical countries where the plant grows well. The current study investigated the effects of partially substituting wheat flour (WF) with tiger nut flour (TNF) on the physical and sensory properties of different bread types to evaluate the more amenable system for tiger nut incorporation. The substitution was done at WF:TNF ratio of 100 : 0, 90 : 10, 85 : 15, 80 : 20, 75 : 25, and 70 : 30 for butter bread (Bb), tea bread (Tb), and sugar bread (Sb). The results show that WF substitution with TNF increased bread brownness and color saturation and decreased lightness, showing the highest impact on Sb, followed by Tb and Bb. Additionally, bread-specific volume decreased significantly after 20% (Bb), 25% (Tb), and 30% (Sb) TNF substitution. Furthermore, substituting WF with 30% TNF increased crumb hardness from approx. 1.87 N to 3.64 N (Bb), 3.46 N to 8.14 N (Tb), and 6.71 N to 11.39 N (Sb) and caused significant increases to 17.80 N (Tb) and 21.08 N (Sb) after 3 d storage. Only a marginal effect on storage hardness (4.32 N) was observed for Bb. Substituting WF with 10% TNF for Bb or 25% TNF for Tb led to significantly higher consumer (N = 56) scores for all attributes and overall acceptability. However, no significant effect on the overall acceptability of Sb was observed. Flash profiling showed frequently used descriptors for Bb as firm, moist, buttery, smooth, and astringent. After 10% TNF substitution, descriptors were chewy, firm, sweet, porous, dry, and caramel, and that of 30% TNF were grainy, chocolate, brown, nutty, and flaky. Substituting WF with TNF increased the lipids, fiber, and minerals content but decreased the protein and carbohydrate contents of bread. TNF substitution led to different physical and sensory effects depending on bread type, showing that Bb with 10% or Tb with 25% TNF is more comparable with the overall acceptance quality of 100% WF. The study is relevant for utilizing tiger nuts as an ingredient in bread products.

4.
Int J Food Sci ; 2021: 8870001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33884261

RESUMO

The objective of this study was to provide the optimum drying conditions to produce high-quality dried tiger nuts using hot-air drying. For this, we evaluated the effect of the whole, halved, and pulverized tiger nuts and air temperature (50 to 70°C) on the drying kinetics and quality of tiger nuts. The drying process generally followed a constant rate in the first 3 hours and a falling regime. We found the optimum drying conditions for tiger nuts to be crushed before convective hot-air drying at a temperature of 70°C. At this optimum condition, the predicted drying time, vitamin C content, reducing sugars, browning, brightness, redness, and yellowness was 780 min, 22.9 mg/100 mg dry weight, 157.01 mg/100 g dry weight, 0.21 Abs unit, 56.97, 1.6, and 17.0, respectively. The tiger nut's reducing sugars increased from the 130.8 mg/100 dry weight in the raw tiger nuts to between 133.11 and 158.18 mg/100 dry weight after drying. The vitamin C degradation rate was highest in the uncut tiger nuts (32-35%) while in the halved and the pulverized samples, it was between 12 and 17%. The crushed samples' effective moisture removal increased between 5.6- and 6.75-fold at the different air temperatures than that of the intact tiger nuts. The activation energy was 18.17 kJ/mol for the unbroken, 14.78 kJ/mol for the halved, and 26.61 kJ/mol for the pulverized tiger nut samples. The model MR = 0.997 exp(-0.02t 1.266) + 0.0000056t was the most suitable thin-layer drying model among the models examined for convective hot-air drying of tiger nuts. It is advisable to crush tiger nut before hot-air drying to produce better-quality flour for making milk beverages, cakes, biscuits, bread, porridge, and tiger nut-based breakfast cereals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...