Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; 40(6): e3825, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629309

RESUMO

Atrial fibrillation (AF) poses a significant risk of stroke due to thrombus formation, which primarily occurs in the left atrial appendage (LAA). Medical image-based computational fluid dynamics (CFD) simulations can provide valuable insight into patient-specific hemodynamics and could potentially enhance personalized assessment of thrombus risk. However, the importance of accurately representing the left atrial (LA) wall dynamics has not been fully resolved. In this study, we compared four modeling scenarios; rigid walls, a generic wall motion based on a reference motion, a semi-generic wall motion based on patient-specific motion, and patient-specific wall motion based on medical images. We considered a LA geometry acquired from 4D computed tomography during AF, systematically performed convergence tests to assess the numerical accuracy of our solution strategy, and quantified the differences between the four approaches. The results revealed that wall motion had no discernible impact on LA cavity hemodynamics, nor on the markers that indicate thrombus formation. However, the flow patterns within the LAA deviated significantly in the rigid model, indicating that the assumption of rigid walls may lead to errors in the estimated risk factors. In contrast, the generic, semi-generic, and patient-specific cases were qualitatively similar. The results highlight the crucial role of wall motion on hemodynamics and predictors of thrombus formation, and also demonstrate the potential of using a generic motion model as a surrogate for the more complex patient-specific motion. While the present study considered a single case, the employed CFD framework is entirely open-source and designed for adaptability, allowing for integration of additional models and generic motions.


Assuntos
Fibrilação Atrial , Átrios do Coração , Modelos Cardiovasculares , Trombose , Humanos , Trombose/fisiopatologia , Átrios do Coração/fisiopatologia , Átrios do Coração/diagnóstico por imagem , Fibrilação Atrial/fisiopatologia , Hemodinâmica/fisiologia , Simulação por Computador , Hidrodinâmica
2.
Int J Numer Method Biomed Eng ; 39(6): e3703, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37020156

RESUMO

Computational fluid dynamics (CFD) in combination with patient-specific medical images has been used to correlate flow phenotypes with disease initiation, progression and outcome, in search of a prospective clinical tool. A large number of CFD software packages are available, but are typically based on rigid domains and low-order finite volume methods, and are often implemented in massive low-level C++ libraries. Furthermore, only a handful of solvers have been appropriately verified and validated for their intended use. Our goal was to develop, verify and validate an open-source CFD solver for moving domains, with applications to cardiovascular flows. The solver is an extension of the CFD solver Oasis, which is based on the finite element method and implemented using the FEniCS open source framework. The new solver, named OasisMove, extends Oasis by expressing the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian formulation, which is suitable for handling moving domains. For code verification we used the method of manufactured solutions for a moving 2D vortex problem, and for validation we compared our results against existing high-resolution simulations and laboratory experiments for two moving domain problems of varying complexity. Verification results showed that the L 2 error followed the theoretical convergence rates. The temporal accuracy was second-order, while the spatial accuracy was second- and third-order using ℙ 1 / ℙ 1 and ℙ 2 / ℙ 1 finite elements, respectively. Validation results showed good agreement with existing benchmark results, by reproducing lift and drag coefficients with less than 1% error, and demonstrating the solver's ability to capture vortex patterns in transitional and turbulent-like flow regimes. In conclusion, we have shown that OasisMove is an open-source, accurate and reliable solver for cardiovascular flows in moving domains.


Assuntos
Sistema Cardiovascular , Hidrodinâmica , Modelos Cardiovasculares , Estudos Prospectivos , Benchmarking
3.
Biomed Eng Online ; 20(1): 120, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838018

RESUMO

Automated tools for landmarking the internal carotid artery (ICA) bends have the potential for efficient and objective medical image-based morphometric analysis. The two existing algorithms rely on numerical approximations of curvature and torsion of the centerline. However, input parameters, original source code, comparability, and robustness of the algorithms remain unknown. To address the former two, we have re-implemented the algorithms, followed by sensitivity analyses. Of the input parameters, the centerline smoothing had the least impact resulting in 6-7 bends, which is anatomically realistic. In contrast, centerline resolution showed to completely over- and underestimated the number of bends varying from 3 to 33. Applying the algorithms to the same cohort revealed a variability that makes comparison of results between previous studies questionable. Assessment of robustness revealed how one algorithm is vulnerable to model smoothness and noise, but conceptually independent of application. In contrast, the other algorithm is robust and consistent, but with limited general applicability. In conclusion, both algorithms are equally valid albeit they produce vastly different results. We have provided a well-documented open-source implementation of the algorithms. Finally, we have successfully performed this study on the ICA, but application to other vascular regions should be performed with caution.


Assuntos
Artéria Carótida Interna , Imageamento Tridimensional , Algoritmos , Humanos
4.
Int J Numer Method Biomed Eng ; 36(5): e3330, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32125768

RESUMO

Patient-specific medical image-based computational fluid dynamics has been widely used to reveal fundamental insight into mechanisms of cardiovascular disease, for instance, correlating morphology to adverse vascular remodeling. However, segmentation of medical images is laborious, error-prone, and a bottleneck in the development of large databases that are needed to capture the natural variability in morphology. Instead, idealized models, where morphological features are parameterized, have been used to investigate the correlation with flow features, but at the cost of limited understanding of the complexity of cardiovascular flows. To combine the advantages of both approaches, we developed a tool that preserves the patient-specificness inherent in medical images while allowing for parametric alteration of the morphology. In our open-source framework morphMan we convert the segmented surface to a Voronoi diagram, modify the diagram to change the morphological features of interest, and then convert back to a new surface. In this paper, we present algorithms for modifying bifurcation angles, location of branches, cross-sectional area, vessel curvature, shape of bends, and surface roughness. We show qualitative and quantitative validation of the algorithms, performing with an accuracy exceeding 97% in general, and proof-of-concept on combining the tool with computational fluid dynamics. By combining morphMan with appropriate clinical measurements, one could explore the morphological parameter space and resulting hemodynamic response using only a handful of segmented surfaces, effectively minimizing the main bottleneck in image-based computational fluid dynamics.


Assuntos
Artéria Carótida Interna/fisiologia , Algoritmos , Hemodinâmica/fisiologia , Humanos , Aumento da Imagem , Imageamento Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...