Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 12810-12816, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524462

RESUMO

The 5' cap is a distinguishing feature of transcripts made by polymerase II and characterized by an N7-methylated guanosine (m7G) linked to the first transcribed nucleotide by a 5'-5' triphosphate bridge. It stabilizes eukaryotic mRNAs and plays a crucial role in translation initiation. Its importance in mRNA processing, translation, and turnover makes the 5' cap a privileged structure for engineering by non-natural modifications. A photocleavable group at the 5' cap of guanosine was recently used to mute translation of exogenous mRNAs. Its removal by light enabled direct control of protein production at the posttranscriptional level. Modifications in the triphosphate bridge impede degradation by specific decapping enzymes and maintain translation. Here, we combined 5' cap modifications at different positions and investigated how they impact 5' cap-dependent processes in distinct manners. We synthesized 5' cap analogues with a photocleavable group at the N2-position of m7G in addition to a medronate in the triphosphate bridge to obtain a photoactivatable 5' cap analogue featuring a methylene group between the ß and γ phosphates. The resulting Medronate-FlashCap transiently or permanently impeded distinct crucial interactions of the 5' cap required for translation and degradation. We show that the Medronate-FlashCap is compatible with in vitro transcription to generate muted mRNA and that light can be used to activate translation in cells. After light-induced removal of the photocleavable group, the Medronate-FlashCap remained stable against degradation by the decapping enzyme DcpS. The additional methylene group renders the 5' cap resistant to DcpS, while maintaining the interaction with cap-binding proteins.

2.
Chemistry ; 30(2): e202303174, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883670

RESUMO

Protein synthesis is important and regulated by various mechanisms in the cell. Translation initiation in eukaryotes starts at the 5' cap and is the most complex of the three phases of mRNA translation. It requires methylation of the N7 position of the terminal guanosine (m7 G). The canonical capping occurs in the nucleus, however, cytoplasmic recapping has been discovered. It functions in switching mRNAs between translating and non-translating states, but the individual steps are difficult to dissect. We targeted cytoplasmic cap methylation as the ultimate step of cytoplasmic recapping. We present an N7G photocaged 5' cap that can be activated for cytoplasmic methylation by visible light. We report chemical and chemo-enzymatic synthesis of this 5' cap with 7-(diethylamino)-4-methyl-coumarin (DEACM) at the N7G and validate that it is not bound by translation initiation factor 4E (eIF4E). We demonstrate incorporation into mRNA, the release of unmethylated cap analog and enzymatic remethylation to functional cap 0 after irradiation at 450 nm. In cells, irradiation triggers translation of mRNAs with the N7G photocaged 5' cap via cytoplasmic cap methylation.


Assuntos
Cumarínicos , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Citoplasma/metabolismo , Metilação , Cumarínicos/metabolismo , Luz
3.
Angew Chem Int Ed Engl ; 62(5): e202209975, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36417319

RESUMO

The 5' cap is a hallmark of eukaryotic mRNA involved in the initiation of translation. Its modification with a single photo-cleavable group can bring translation of mRNA under the control of light. However, UV irradiation causes cell stress and downregulation of translation. Furthermore, complex processes often involve timed expression of more than one gene. The approach would thus greatly benefit from the ability to photo-cleave by blue light and to control more than one mRNA at a time. We report the synthesis of a 5' cap modified with a 7-(diethylamino)coumarin (CouCap) and adapted conditions for in vitro transcription. Translation of the resulting CouCap-mRNA is muted in vitro and in mammalian cells, and can be initiated by irradiation with 450 nm. The native cap is restored and no non-natural residues nor sequence alterations remain in the mRNA. Multiplexing for two different mRNAs was achieved by combining cap analogs with coumarin- and ortho-nitrobenzyl-based photo-cleavable groups.


Assuntos
Fator de Iniciação 4E em Eucariotos , Biossíntese de Proteínas , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Capuzes de RNA/metabolismo , Mamíferos/metabolismo
4.
Chembiochem ; 24(2): e202200522, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36408753

RESUMO

The 5' cap of mRNA plays a critical role in mRNA processing, quality control and turnover. Enzymatic availability of the 5' cap governs translation and could be a tool to investigate cell fate decisions and protein functions or develop protein replacement therapies. We have previously reported on the chemical synthesis of 5' cap analogues with photocleavable groups for this purpose. However, the synthesis is complex and post-synthetic enzymatic installation may make the technique more applicable to biological researchers. Common 5' cap analogues, like the cap 0, are commercially available and routinely used for in vitro transcription. Here, we report a facile enzymatic approach to attach photocleavable groups site-specifically to the N2 position of m7 G of the 5' cap. By expanding the substrate scope of the methyltransferase variant GlaTgs V34A and using synthetic co-substrate analogues, we could enzymatically photocage the 5' cap and recover it after irradiation.


Assuntos
Metiltransferases , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo
5.
Nat Chem ; 14(8): 905-913, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35725774

RESUMO

The translation of messenger RNA (mRNA) is a fundamental process in gene expression, and control of translation is important to regulate protein synthesis in cells. The primary hallmark of eukaryotic mRNAs is their 5' cap, whose molecular contacts to the eukaryotic translation initiation factor eIF4E govern the initiation of translation. Here we report 5' cap analogues with photo-cleavable groups (FlashCaps) that prohibit binding to eIF4E and resist cleavage by decapping enzymes. These compounds are compatible with the general and efficient production of mRNAs by in vitro transcription. In FlashCap-mRNAs, the single photocaging group abrogates translation in vitro and in mammalian cells without increasing immunogenicity. Irradiation restores the native cap, triggering efficient translation. FlashCaps overcome the problem of remaining sequence or structure changes in mRNA after irradiation that limited previous designs. Together, these results demonstrate that FlashCaps offer a route to regulate the expression of any given mRNA and to dose mRNA therapeutics with spatio-temporal control.


Assuntos
Fator de Iniciação 4E em Eucariotos , Biossíntese de Proteínas , Animais , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética
6.
Chembiochem ; 23(1): e202100437, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34606675

RESUMO

Methylation and demethylation of DNA, RNA and proteins constitutes a major regulatory mechanism in epigenetic processes. Investigations would benefit from the ability to install photo-cleavable groups at methyltransferase target sites that block interactions with reader proteins until removed by non-damaging light in the visible spectrum. Engineered methionine adenosyltransferases (MATs) have been exploited in cascade reactions with methyltransferases (MTases) to modify biomolecules with non-natural groups, including first evidence for accepting photo-cleavable groups. We show that an engineered MAT from Methanocaldococcus jannaschii (PC-MjMAT) is 308-fold more efficient at converting ortho-nitrobenzyl-(ONB)-homocysteine than the wildtype enzyme. PC-MjMAT is active over a broad range of temperatures and compatible with MTases from mesophilic organisms. We solved the crystal structures of wildtype and PC-MjMAT in complex with AdoONB and a red-shifted derivative thereof. These structures reveal that aromatic stacking interactions within the ligands are key to accommodating the photocaging groups in PC-MjMAT. The enlargement of the binding pocket eliminates steric clashes to enable AdoMet analogue binding. Importantly, PC-MjMAT exhibits remarkable activity on methionine analogues with red-shifted ONB-derivatives enabling photo-deprotection of modified DNA by visible light.


Assuntos
DNA/química , Luz , Metionina Adenosiltransferase/química , RNA/química , DNA/genética , DNA/metabolismo , Methanocaldococcus/enzimologia , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Estrutura Molecular , Processos Fotoquímicos , Engenharia de Proteínas , RNA/genética , RNA/metabolismo
7.
Angew Chem Int Ed Engl ; 60(1): 480-485, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33017502

RESUMO

Methylation and demethylation of DNA, RNA and proteins has emerged as a major regulatory mechanism. Studying the function of these modifications would benefit from tools for their site-specific inhibition and timed removal. S-Adenosyl-L-methionine (AdoMet) analogs in combination with methyltransferases (MTases) have proven useful to map or block and release MTase target sites, however their enzymatic generation has been limited to aliphatic groups at the sulfur atom. We engineered a SAM synthetase from Cryptosporidium hominis (PC-ChMAT) for efficient generation of AdoMet analogs with photocaging groups that are not accepted by any WT MAT reported to date. The crystal structure of PC-ChMAT at 1.87 Šrevealed how the photocaged AdoMet analog is accommodated and guided engineering of a thermostable MAT from Methanocaldococcus jannaschii. PC-MATs were compatible with DNA- and RNA-MTases, enabling sequence-specific modification ("writing") of plasmid DNA and light-triggered removal ("erasing").


Assuntos
Metilases de Modificação do DNA/química , Engenharia de Proteínas/métodos , S-Adenosilmetionina/síntese química , DNA/química , Humanos
8.
Chem Soc Rev ; 49(23): 8749-8773, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33084688

RESUMO

Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.


Assuntos
DNA/química , RNA/química , Coloração e Rotulagem
9.
Angew Chem Int Ed Engl ; 59(8): 3161-3165, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747109

RESUMO

Selective modification of nucleobases with photolabile caging groups enables the study and control of processes and interactions of nucleic acids. Numerous positions on nucleobases have been targeted, but all involve formal substitution of a hydrogen atom with a photocaging group. Nature, however, also uses ring-nitrogen methylation, such as m7 G and m1 A, to change the electronic structure and properties of RNA and control biomolecular interactions essential for translation and turnover. We report that aryl ketones such as benzophenone and α-hydroxyalkyl ketone are photolabile caging groups if installed at the N7 position of guanosine or the N1 position of adenosine. Common photocaging groups derived from the ortho-nitrobenzyl moiety were not suitable. Both chemical and enzymatic methods for site-specific modification of N7G in nucleosides, dinucleotides, and RNA were developed, thereby opening the door to studying the molecular interactions of m7 G and m1 A with spatiotemporal control.


Assuntos
Benzofenonas/química , Guanosina/química , RNA/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...