Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(17)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37681867

RESUMO

In nearly every lab, real-time quantitative polymerase chain reaction (qPCR) is used to quantify gene expression. However, a comparison of different samples requires the careful selection of suitable reference genes (RGs), sometimes referred to as housekeeping genes. In the case of vascular smooth muscle cells (vSMCs), it is important to know under which conditions gene expression in isolated and cultured vSMCs can be compared with vSMCs in a healthy blood vessel. We isolated the vSMC-containing layer of the rat aorta (tunica media) and used one (longitudinal) half for direct RNA extraction, while the other half served to isolate and culture vSMCs prior to RNA extraction. First, the expression of the routinely used RGs beta-actin (Actb) and Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) is investigated in intact media and corresponding cultured vSMCs. Significant differences in their Ct values show that these RGs could not be used for such direct comparisons; therefore, we select 15 different RGs. Only the gene expression of the small ribonuclear protein (snRNP) U2 shows no significant differences between the absolute Ct values of cultured vSMCs and the intact media; moreover, no differences were found between male and female rats in our experimental setup. In conclusion, U2 was shown to be an appropriate (sex-independent) RG to compare relative expression levels of vSMCs in culture to those vSMCs within their physiological tissue environment.


Assuntos
Genes Essenciais , Músculo Liso Vascular , Feminino , Masculino , Animais , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Expressão Gênica , RNA
2.
J Biol Chem ; 292(50): 20449-20460, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29046354

RESUMO

The membrane fusion necessary for vesicle trafficking is driven by the assembly of heterologous SNARE proteins orchestrated by the binding of Sec1/Munc18 (SM) proteins to specific syntaxin SNARE proteins. However, the precise mode of interaction between SM proteins and SNAREs is debated, as contrasting binding modes have been found for different members of the SM protein family, including the three vertebrate Munc18 isoforms. While different binding modes could be necessary, given their roles in different secretory processes in different tissues, the structural similarity of the three isoforms makes this divergence perplexing. Although the neuronal isoform Munc18a is well-established to bind tightly to both the closed conformation and the N-peptide of syntaxin 1a, thereby inhibiting SNARE complex formation, Munc18b and -c, which have a more widespread distribution, are reported to mainly interact with the N-peptide of their partnering syntaxins and are thought to instead promote SNARE complex formation. We have reinvestigated the interaction between Munc18c and syntaxin 4 (Syx4). Using isothermal titration calorimetry, we found that Munc18c, like Munc18a, binds to both the closed conformation and the N-peptide of Syx4. Furthermore, using a novel kinetic approach, we found that Munc18c, like Munc18a, slows down SNARE complex formation through high-affinity binding to syntaxin. This strongly suggests that secretory Munc18s in general control the accessibility of the bound syntaxin, probably preparing it for SNARE complex assembly.


Assuntos
Regulação para Baixo , Modelos Moleculares , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Calorimetria , Cinética , Camundongos , Proteínas Munc18/química , Proteínas Munc18/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Filogenia , Mutação Puntual , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas SNARE/química , Termodinâmica , Titulometria
3.
BMC Biol ; 10: 71, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22873208

RESUMO

BACKGROUND: Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. RESULTS: Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. CONCLUSIONS: Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.


Assuntos
Evolução Molecular , Genômica , Proteínas rab de Ligação ao GTP/genética , Sequência de Aminoácidos , Animais , Eucariotos/genética , Variação Genética , Humanos , Cadeias de Markov , Família Multigênica , Filogenia , Reprodutibilidade dos Testes , Especificidade da Espécie , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...