Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(38): e202400986, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705867

RESUMO

As the global surfactant market continues to expand, there is an increasing need to develop bio-based alternatives in the shift towards a circular economy. This study focuses on the synthesis of polar, amphoteric, amine-oxide surfactants starting from biomass-derived monosaccharides and demonstrating their potential in various applications. The synthesis involved a reductive amination of the sugars with an alkylamine and formaldehyde followed by oxidation to produce N-oxide surfactants. These bio-based surfactants exhibited promising properties, including high solubility, foamability, surface tension reduction, and critical micelle concentration. In particular, N-GalA1.10 and N-GalA1.12 showed comparable performance to commercial surfactants. Furthermore, these bio-based surfactants demonstrated significantly lower skin irritation potential when compared to petrochemical-derived counterparts like sodium laureth sulfate (SLES), making them potentially suitable for personal care products. The biodegradability assessment revealed that N-GalA1.12 exhibited good biodegradation, indicating its potential environmental compatibility. In conclusion, this study highlights the potential of bio-based N-oxide surfactants derived from monosaccharides as sustainable and skin-friendly alternatives to traditional amphoteric surfactants, like cocamidopropyl betaine (CAPB).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...