Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1439: 112-123, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607319

RESUMO

LC-MS using electrospray ionization is currently the method of choice in bio-organic analysis covering a wide range of applications in a broad spectrum of biological media. The technique is noted for its high sensitivity but one major limitation that hinders achievement of its optimal sensitivity is the signal suppression due to matrix inferences introduced by the presence of co-extracted compounds during the sample preparation procedure. The analysis of DNA adducts of common environmental carcinogens is particularly sensitive to such matrix effects as sample preparation is a multistep process which involves "contamination" of the sample due to the addition of enzymes and other reagents for digestion of the DNA in order to isolate the analyte(s). This problem is further exacerbated by the need to reach low levels of quantitation (LOQ in the ppb level) while also working with limited (2-5 µg) quantities of sample. We report here on the systematic investigation of ion signal suppression contributed by each individual step involved in the sample preparation associated with the analysis of DNA adducts of polycyclic aromatic hydrocarbon (PAH) using as model analyte BaP-dG, the deoxyguanosine (dG) adduct of benzo[a]pyrene (BaP). The individual matrix contribution of each one of these sources to analyte signal was systematically addressed as were any interactive effects. The information was used to develop a validated analytical protocol for the target biomarker at levels typically encountered in vivo using as little as 2 µg of DNA and applied to a dose response study using a metabolically competent cell line.


Assuntos
Carcinógenos Ambientais/análise , Adutos de DNA/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/análogos & derivados , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/análise , Benzo(a)pireno/análise , Benzo(a)pireno/farmacologia , Carcinógenos Ambientais/farmacologia , Células Cultivadas , Cromatografia Líquida , Adutos de DNA/farmacologia , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Humanos , Espectrometria de Massas
2.
Oncotarget ; 6(2): 836-45, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25596734

RESUMO

Bladder cancer risk is significantly higher in men than in women. 4-Aminobiphenyl (ABP) is a major human bladder carcinogen from tobacco smoke and other sources. In mice, male bladder is more susceptible to ABP-induced carcinogenesis than female bladder, but ABP is more carcinogenic in the livers of female mice than of male mice. Here, we show that castration causes male mice to acquire female phenotype regarding susceptibility of bladder and liver to ABP. However, spaying has little impact on organ susceptibility to ABP. Liver UDP-glucuronosyltransferases (UGTs) are believed to protect liver against but sensitize bladder to ABP, as glucuronidation of ABP and its metabolites generally reduces their toxicity and promotes their elimination via urine, but the metabolites are labile in urine, delivering carcinogenic species to the bladder. Indeed, liver expression of ABP-metabolizing human UGT1A3 transgene in mice increases bladder susceptibility to ABP. However, ABP-specific liver UGT activity is significantly higher in wild-type female mice than in their male counterparts, and castration also significantly increases ABP-specific UGT activity in the liver. Taken together, our data suggest that androgen increases bladder susceptibility to ABP via liver, likely by modulating an ABP-metabolizing liver enzyme, but exclude UGT as an important mediator.


Assuntos
Compostos de Aminobifenil/toxicidade , Dano ao DNA , Fígado/efeitos dos fármacos , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária/efeitos dos fármacos , Animais , Feminino , Humanos , Masculino , Camundongos
3.
J Pharm Sci ; 103(10): 3033-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043726

RESUMO

The formation of aspartyl succinimide is a common post-translational modification of protein pharmaceuticals under acidic conditions. We present a method to detect and quantitate succinimide in intact protein via hydrazine trapping and chemical derivatization. Succinimide, which is labile under typical analytical conditions, is first trapped with hydrazine to form stable hydrazide and can be directly analyzed by mass spectrometry. The resulting aspartyl hydrazide can be selectively derivatized by various tags, such as fluorescent rhodamine sulfonyl chloride that absorbs strongly in the visible region (570 nm). Our tagging strategy allows the labeled protein to be analyzed by orthogonal methods, including HPLC-UV-Vis, liquid chromatography mass spectrometry (LC-MS), and SDS-PAGE coupled with fluorescence imaging. A unique advantage of our method is that variants containing succinimide, after derivatization, can be readily resolved via either affinity enrichment or chromatographic separation. This allows further investigation of individual factors in a complex protein mixture that affect succinimide formation. Some additional advantages are imparted by fluorescence labeling including the facile detection of the intact protein without proteolytic digestion to peptides; and high sensitivity, for example, without optimization, 0.41% succinimide was readily detected. As such, our method should be useful for rapid screening, optimization of formulation conditions, and related processes relevant to protein pharmaceuticals.


Assuntos
Hidrazinas/química , Proteínas/química , Succinimidas/análise , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Espectrofotometria Ultravioleta
4.
Rapid Commun Mass Spectrom ; 27(13): 1473-80, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23722681

RESUMO

RATIONALE: There is continued interest in exploring new analytical technologies for the detection and quantitation of DNA adducts, biomarkers which provide direct evidence of exposure and genetic damage in cells. With the goal of reducing clean-up steps and improving sample throughput, a Differential Mobility Spectrometry/Mass Spectrometry (DMS/MS) platform has been introduced for adduct analysis. METHODS: A DMS/MS platform has been utilized for the analysis of dG-ABP, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl (4-ABP). After optimization of the DMS parameters, each sample was analyzed in just 30 s following a simple protein precipitation step of the digested DNA. RESULTS: A detection limit of one modification in 10^6 nucleosides has been achieved using only 2 µg of DNA. A brief comparison (quantitative and qualitative) with liquid chromatography/mass spectrometry is also presented highlighting the advantages of using the DMS/MS method as a high-throughput platform. CONCLUSIONS: The data presented demonstrate the successful application of a DMS/MS/MS platform for the rapid quantitation of DNA adducts using, as a model analyte, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl.


Assuntos
Adutos de DNA/química , Desoxiguanosina/química , Espectrometria de Massas em Tandem/métodos , Mutagênicos/análise
5.
Cancer Lett ; 334(1): 10-9, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22960573

RESUMO

The technique of (32)P-postlabeling, which was introduced in 1982 for the analysis of DNA adducts, has long been the method of choice for in vivo studies because of its high sensitivity as it requires only <10µg DNA to achieve the detection of 1 adduct in 10(10) normal bases. (32)P-postlabeling has therefore been utilized in numerous human and animal studies of DNA adduct formation. Like all techniques (32)P-postlabeling does have several disadvantages including the use of radioactive phosphorus, lack of internal standards, and perhaps most significantly does not provide any structural information for positive identification of unknown adducts, a shortcoming that could significantly hamper progress in the field. Structural methods have since been developed to allow for positive identification of DNA adducts, but to this day, the same level of sensitivity and low sample requirements provided by (32)P-postlabeling have not been matched. In this mini review we will discuss the (32)P-postlabeling method and chronicle the transition to mass spectrometry via the hyphenation of gas chromatography, capillary electrophoresis, and ultimately liquid chromatography which, some 30years later, is only just starting to approach the sensitivity and low sample requirements of (32)P-postlabeling. This paper focuses on the detection of bulky carcinogen-DNA adducts, with no mention of oxidative damage or small alkylating agents. This is because the (32)P-postlabeling assay is most compatible with bulky DNA adducts. This will also allow a more comprehensive focus on a subject that has been our particular interest since 1990.


Assuntos
Adutos de DNA/análise , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Animais , Cromatografia Líquida de Alta Pressão , Adutos de DNA/química , Eletroforese Capilar/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Radioisótopos de Fósforo , Sensibilidade e Especificidade
6.
Anal Chem ; 80(10): 3882-9, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18419136

RESUMO

Isoaspartate formation is a ubiquitous post-translation modification arising from spontaneous asparagine deamidation or aspartate isomerization. The formation of isoaspartate inserts a methylene group into the protein backbone, generating a "kink", and may drastically alter protein structure and function, thereby playing critical roles in a myriad of biological processes, human diseases, and protein pharmaceutical development. Herein, we report a chemo-enzymatic detection method for the isoaspartate protein, which in particular allows the affinity enrichment of isoaspartate-containing proteins. In the initial step, protein isoaspartate methyltransferase selectively converts isoaspartates into the corresponding methyl esters. Subsequently, the labile methyl ester is trapped by strong nucleophiles in aqueous solutions, such as hydrazines to form hydrazides. The stable hydrazide products can be analyzed by standard proteomic techniques, such as matrix-assisted laser desorption ionization and electrospray ionization mass spectrometry. Furthermore, the chemical trapping step allows us to introduce several tagging strategies for product identification and quantification, such as UV-vis and fluorescence detection through a dansyl derivative. Most significantly, the hydrazide product can be enriched by affinity chromatography using aldehyde resins, thus drastically reducing sample complexity. Our method hence represents the first technique for the affinity enrichment of isoaspartyl proteins and should be amendable to the systematic and comprehensive characterization of isoaspartate, particularly in complex systems.


Assuntos
Hidrazinas/química , Ácido Isoaspártico/análise , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteínas/química , Cromatografia de Afinidade , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...