Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 25(21-22): 3498-512, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15565705

RESUMO

Microfluidic systems have become more and more important in the field of analytical chemistry. Detection methods on these microsystems are essential for the identification and quantification of chemical species that are being analyzed. This review concentrates on the latest developments of optical detection methods and mass spectrometry in conjunction with microfluidic systems. Electrochemical methods are discussed in another review in the same issue of this journal. Within the optical detection section, topics such as multiplexed detection and the use of waveguides are discussed. Within the discussion of mass spectrometry, the main focus is on electrospray emitters as interfaces between microsystem and spectrometer. Apart from optical detection and mass spectrometry, other techniques such as flame ionization and nuclear magnetic resonance are also mentioned.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Espectrometria de Massas , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/tendências
2.
Lab Chip ; 2(4): 242-6, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15100818

RESUMO

In this article, we focus on the enormous potential of a CO(2)-laser system for rapidly producing polymer microfluidic structures. The dependence was assessed of the depth and width of laser-cut channels on the laser beam power and on the number of passes of the beam along the same channel. In the experiments the laser beam power was varied between 0 and 40 W and the passes were varied in the range of 1 to 7 times. Typical channel depths were between 100 and 300 microm, while the channels were typically 250 microm wide. The narrowest produced channel was 85 microm wide. Several bonding methods for microstructured PMMA [poly(methyl methacrylate)] parts were investigated, such as solvent-assisted glueing, melting, laminating and surface activation using a plasma asher. A solvent-assisted thermal bonding method proved to be the most time-efficient one. Using laser micromachining together with bonding, a three-layer polymer microstructure with included optical fibers was fabricated within two days. The use of CO(2)-laser systems to produce microfluidic systems has not been published before. These systems provide a cost effective alternative to UV-laser systems and they are especially useful in microfluidic prototyping due to the very short cycle time of production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...