Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 20(2): 4103-4127, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899619

RESUMO

The Dynamical Survival Analysis (DSA) is a framework for modeling epidemics based on mean field dynamics applied to individual (agent) level history of infection and recovery. Recently, the Dynamical Survival Analysis (DSA) method has been shown to be an effective tool in analyzing complex non-Markovian epidemic processes that are otherwise difficult to handle using standard methods. One of the advantages of Dynamical Survival Analysis (DSA) is its representation of typical epidemic data in a simple although not explicit form that involves solutions of certain differential equations. In this work we describe how a complex non-Markovian Dynamical Survival Analysis (DSA) model may be applied to a specific data set with the help of appropriate numerical and statistical schemes. The ideas are illustrated with a data example of the COVID-19 epidemic in Ohio.


Assuntos
COVID-19 , Epidemias , Humanos , Ohio , Probabilidade
2.
J Theor Biol ; 561: 111404, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36627078

RESUMO

As the Coronavirus 2019 disease (COVID-19) started to spread rapidly in the state of Ohio, the Ecology, Epidemiology and Population Health (EEPH) program within the Infectious Diseases Institute (IDI) at The Ohio State University (OSU) took the initiative to offer epidemic modeling and decision analytics support to the Ohio Department of Health (ODH). This paper describes the methodology used by the OSU/IDI response modeling team to predict statewide cases of new infections as well as potential hospital burden in the state. The methodology has two components: (1) A Dynamical Survival Analysis (DSA)-based statistical method to perform parameter inference, statewide prediction and uncertainty quantification. (2) A geographic component that down-projects statewide predicted counts to potential hospital burden across the state. We demonstrate the overall methodology with publicly available data. A Python implementation of the methodology is also made publicly available. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Ohio/epidemiologia , Pandemias , Hospitais
3.
medRxiv ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35923319

RESUMO

As the Coronavirus 2019 (COVID-19) disease started to spread rapidly in the state of Ohio, the Ecology, Epidemiology and Population Health (EEPH) program within the Infectious Diseases Institute (IDI) at the Ohio State University (OSU) took the initiative to offer epidemic modeling and decision analytics support to the Ohio Department of Health (ODH). This paper describes the methodology used by the OSU/IDI response modeling team to predict statewide cases of new infections as well as potential hospital burden in the state. The methodology has two components: 1) A Dynamic Survival Analysis (DSA)-based statistical method to perform parameter inference, statewide prediction and uncertainty quantification. 2) A geographic component that down-projects statewide predicted counts to potential hospital burden across the state. We demonstrate the overall methodology with publicly available data. A Python implementation of the methodology has been made available publicly. Highlights: We present a novel statistical approach called Dynamic Survival Analysis (DSA) to model an epidemic curve with incomplete data. The DSA approach is advantageous over standard statistical methods primarily because it does not require prior knowledge of the size of the susceptible population, the overall prevalence of the disease, and also the shape of the epidemic curve.The principal motivation behind the study was to obtain predictions of case counts of COVID-19 and the resulting hospital burden in the state of Ohio during the early phase of the pandemic.The proposed methodology was applied to the COVID-19 incidence data in the state of Ohio to support the Ohio Department of Health (ODH) and the Ohio Hospital Association (OHA) with predictions of hospital burden in each of the Hospital Catchment Areas (HCAs) of the state.

5.
Front Mol Neurosci ; 15: 1054449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710929

RESUMO

Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain "Pepperberg plots," that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the "upward bend" for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~107 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play.

6.
Front Mol Neurosci ; 15: 1050545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590910

RESUMO

Accurate photon counting requires that rods generate highly amplified, reproducible single photon responses (SPRs). The SPR is generated within the rod outer segment (ROS), a multilayered structure built from membranous disks that house rhodopsin. Photoisomerization of rhodopsin at the disk rim causes a local depletion of cGMP that closes ion channels in the plasmalemma located nearby with relative rapidity. In contrast, a photoisomerization at the disk center, distant from the plasmalemma, has a delayed impact on the ion channels due to the time required for cGMP redistribution. Radial differences should be greatest in large diameter rods. By affecting membrane guanylate cyclase activity, bicarbonate could impact spatial inhomogeneity in cGMP content. It was previously known that in the absence of bicarbonate, SPRs are larger and faster at the base of a toad ROS (where the ROS attaches to the rest of the cell) than at the distal tip. Given that bicarbonate enters the ROS at the base and diffuses to the tip and that it expedites flash response recovery, there should be an axial concentration gradient for bicarbonate that would accentuate the base-to-tip SPR differences. Seeking to understand how ROS geometry and bicarbonate affect SPR variability, we used mathematical modeling and made electrophysiological recordings of single rods. Modeling predicted and our experiments confirmed minor radial SPR variability in large diameter, salamander rods that was essentially unchanged by bicarbonate. SPRs elicited at the base and tip of salamander rods were similar in the absence of bicarbonate, but when treated with 30 mM bicarbonate, SPRs at the base became slightly faster than those at the tip, verifying the existence of an axial gradient for bicarbonate. The differences were small and unlikely to undermine visual signaling. However, in toad rods with longer ROSs, bicarbonate somehow suppressed the substantial, axial SPR variability that is naturally present in the absence of bicarbonate. Modeling suggested that the axial gradient of bicarbonate might dampen the primary phototransduction cascade at the base of the ROS. This novel effect of bicarbonate solves a mystery as to how toad vision is able to function effectively in extremely dim light.

7.
PLoS One ; 16(10): e0258721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710119

RESUMO

In daylight, cone photoreceptors in the retina are responsible for the bulk of visual perception, yet compared to rods, far less is known quantitatively about their biochemistry. This is partly because it is hard to isolate and purify cone proteins. The issue is also complicated by the synergistic interaction of these parameters in producing systems biology outputs, such as photoresponse. Using a 3-D resolved, finite element model of cone outer segments, here we conducted a study of parameter significance using global sensitivity analysis, by Sobol indices, which was contextualized within the uncertainty surrounding these parameters in the available literature. The analysis showed that a subset of the parameters influencing the circulating dark current, such as the turnover rate of cGMP in the dark, may be most influential for variance with experimental flash response, while the shut-off rates of photoexcited rhodopsin and phosphodiesterase also exerted sizable effect. The activation rate of transducin by rhodopsin and the light-induced hydrolysis rate of cGMP exerted measurable effects as well but were estimated as relatively less significant. The results of this study depend on experimental ranges currently described in the literature and should be revised as these become better established. To that end, these findings may be used to prioritize parameters for measurement in future investigations.


Assuntos
GMP Cíclico/metabolismo , Transdução de Sinal Luminoso , Luz , Células Fotorreceptoras Retinianas Cones/fisiologia , Transducina/fisiologia , Visão Ocular/fisiologia , Animais , Camundongos , Camundongos Knockout
8.
PLoS One ; 15(10): e0240527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052986

RESUMO

Retinal rods function as accurate photon counters to provide for vision under very dim light. To do so, rods must generate highly amplified, reproducible responses to single photons, yet outer segment architecture and randomness in the location of rhodopsin photoisomerization on the surface of an internal disk introduce variability to the rising phase of the photon response. Soon after a photoisomerization at a disk rim, depletion of cGMP near the plasma membrane closes ion channels and hyperpolarizes the rod. But with a photoisomerization in the center of a disk, local depletion of cGMP is distant from the channels in the plasma membrane. Thus, channel closure is delayed by the time required for the reduction of cGMP concentration to reach the plasma membrane. Moreover, the local fall in cGMP dissipates over a larger volume before affecting the channels, so response amplitude is reduced. This source of variability increases with disk radius. Using a fully space-resolved biophysical model of rod phototransduction, we quantified the variability attributable to randomness in the location of photoisomerization as a function of disk structure. In mouse rods that have small disks bearing a single incisure, this variability was negligible in the absence of the incisure. Variability was increased slightly by the incisure, but randomness in the shutoff of rhodopsin emerged as the main source of single photon response variability at all but the earliest times. Variability arising from randomness in the transverse location of photoisomerization increased in magnitude and persisted over a longer period in the photon response of large salamander rods. A symmetric arrangement of multiple incisures in the disks of salamander rods greatly reduced this variability during the rising phase, but the incisures had the opposite effect on variability arising from randomness in rhodopsin shutoff at later times.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Rodopsina/metabolismo , Visão Ocular/fisiologia , Animais , Isomerismo , Camundongos , Modelos Teóricos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Urodelos
9.
PLoS One ; 14(12): e0225948, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805112

RESUMO

The single photon response (SPR) in vertebrate photoreceptors is inherently variable due to several stochastic events in the phototransduction cascade, the main one being the shutoff of photoactivated rhodopsin. Deactivation is driven by a random number of steps, each of random duration with final quenching occurring after a random delay. Nevertheless, variability of the SPR is relatively low, making the signal highly reliable. Several biophysical and mathematical mechanisms contributing to variability suppression have been examined by the authors. Here we investigate the contribution of local depletion of cGMP by PDE*, the non linear dependence of the photocurrent on cGMP, Ca2+ feedback by making use of a fully space resolved (FSR) mathematical model, applied to two species (mouse and salamander), by varying the cGMP diffusion rate severalfold and rod outer segment diameter by an order of magnitude, and by introducing new, more refined, and time dependent variability functionals. Globally well stirred (GWS) models, and to a lesser extent transversally well stirred models (TWS), underestimate the role of nonlinearities and local cGMP depletion in quenching the variability of the circulating current with respect to fully space resolved models (FSR). These distortions minimize the true extent to which SPR is stabilized by locality in cGMP depletion, nonlinear effects linking cGMP to current, and Ca2+ feedback arising from the physical separation of E* from the ion channels located on the outer shell, and the diffusion of these second messengers in the cytoplasm.


Assuntos
Cálcio/metabolismo , GMP Cíclico/metabolismo , Modelos Biológicos , Fótons , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Transdução de Sinais , Algoritmos , Animais , Biomarcadores , Camundongos , Segmento Externo da Célula Bastonete/fisiologia
10.
PLoS One ; 14(7): e0219848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31344066

RESUMO

Mammals have two types of photoreceptors, rods and cones. While rods are exceptionally sensitive and mediate vision at very low illumination levels, cones operate in daylight and are responsible for the bulk of visual perception in most diurnal animals, including humans. Yet the mechanisms of phototransduction in cones is understudied, largely due to unavailability of pure cone outer segment (COS) preparations. Here we present a novel mathematical model of cone phototransduction that explicitly takes into account complex cone geometry and its multiple physical scales, faithfully reproduces features of the cone response, and is orders of magnitude more efficient than the standard 3D diffusion model. This is accomplished through the mathematical techniques of homogenization and concentrated capacity. The homogenized model is then computationally implemented by finite element method. This homogenized model permits one to analyze the effects of COS geometry on visual transduction and lends itself to performing large numbers of numerical trials, as required for parameter analysis and the stochasticity of rod and cone signal transduction. Agreement between the nonhomogenized, (i.e., standard 3D), and homogenized diffusion models is reported along with their simulation times and memory costs. Virtual expression of rod biochemistry on cone morphology is also presented for understanding some of the characteristic differences between rods and cones. These simulations evidence that 3D cone morphology and ion channel localization contribute to biphasic flash response, i.e undershoot. The 3D nonhomogenized and homogenized models are contrasted with more traditional and coarser well-stirred and 1D longitudinal diffusion models. The latter are single-scale and do not explicitly account for the multi-scale geometry of the COS, unlike the 3D homogenized model. We show that simpler models exaggerate the magnitude of the current suppression, yield accelerated time to peak, and do not predict the local concentration of cGMP at the ionic channels.


Assuntos
Transdução de Sinal Luminoso , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Análise de Elementos Finitos , Modelos Teóricos , Análise Espaço-Temporal
11.
Mol Biol Cell ; 27(24): 3937-3946, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733625

RESUMO

Diffusion of particles in curved surfaces is inherently complex compared with diffusion in a flat membrane, owing to the nonplanarity of the surface. The consequence of such nonplanar geometry on diffusion is poorly understood but is highly relevant in the case of cell membranes, which often adopt complex geometries. To address this question, we developed a new finite element approach to model diffusion on curved membrane surfaces based on solutions to Fick's law of diffusion and used this to study the effects of geometry on the entry of surface-bound particles into tubules by diffusion. We show that variations in tubule radius and length can distinctly alter diffusion gradients in tubules over biologically relevant timescales. In addition, we show that tubular structures tend to retain concentration gradients for a longer time compared with a comparable flat surface. These findings indicate that sorting of particles along the surfaces of tubules can arise simply as a geometric consequence of the curvature without any specific contribution from the membrane environment. Our studies provide a framework for modeling diffusion in curved surfaces and suggest that biological regulation can emerge purely from membrane geometry.


Assuntos
Difusão , Algoritmos , Fenômenos Biofísicos , Membrana Celular/metabolismo , Simulação por Computador , Hidrodinâmica , Membranas/metabolismo , Modelos Biológicos , Modelos Teóricos , Software , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...