Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(15)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37338983

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder that causes debilitating swelling and destruction of the joints. People with RA are treated with drugs that actively suppress one or more parts of their immune system, and these may alter the response to vaccination against SARS-CoV-2. In this study, we analyzed blood samples from a cohort of patients with RA after receiving a 2-dose mRNA COVID-19 vaccine regimen. Our data show that individuals on the cytotoxic T lymphocyte antigen 4-Ig therapy abatacept had reduced levels of SARS-CoV-2-neutralizing antibodies after vaccination. At the cellular level, these patients showed reduced activation and class switching of SARS-CoV-2-specific B cells, as well as reduced numbers and impaired helper cytokine production by SARS-CoV-2-specific CD4+ T cells. Individuals on methotrexate showed similar but less severe defects in vaccine response, whereas individuals on the B cell-depleting therapy rituximab had a near-total loss of antibody production after vaccination. These data define a specific cellular phenotype associated with impaired response to SARS-CoV-2 vaccination in patients with RA on different immune-modifying therapies and help inform efforts to improve vaccination strategies in this vulnerable population.


Assuntos
Artrite Reumatoide , COVID-19 , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Artrite Reumatoide/tratamento farmacológico , Anticorpos Antivirais , RNA Mensageiro
2.
SLAS Discov ; 23(7): 603-612, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29634393

RESUMO

High-throughput flow cytometry is an attractive platform for the analysis of adoptive cellular therapies such as chimeric antigen receptor T cell therapy (CAR-T) because it allows for the concurrent measurement of T cell-dependent cellular cytotoxicity (TDCC) and the functional characterization of engineered T cells with respect to percentage of CAR transduction, T cell phenotype, and measurement of T cell function such as activation in a single assay. The use of adherent tumor cell lines can be challenging in these flow-based assays. Here, we present the development of a high-throughput flow-based assay to measure TDCC for a CAR-T construct co-cultured with multiple adherent tumor cell lines. We describe optimal assay conditions (such as adherent cell dissociation techniques to minimize impact on cell viability) that result in robust cytotoxicity assays. In addition, we report on the concurrent use of T cell transduction and activation antibody panels (CD25) that provide further dissection of engineered T cell function. In conclusion, we present the development of a high-throughput flow cytometry method allowing for in vitro interrogation of solid tumor, targeting CAR-T cell-mediated cytotoxicity, CAR transduction, and engineered T cell characterization in a single assay.


Assuntos
Citotoxicidade Imunológica , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...