Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34665131

RESUMO

The ability to use sensory cues to inform goal-directed actions is a critical component of behavior. To study how sounds guide anticipatory licking during classical conditioning, we employed high-density electrophysiological recordings from the hippocampal CA1 area and the prefrontal cortex (PFC) in mice. CA1 and PFC neurons undergo distinct learning-dependent changes at the single-cell level and maintain representations of cue identity at the population level. In addition, reactivation of task-related neuronal assemblies during hippocampal awake Sharp-Wave Ripples (aSWRs) changed within individual sessions in CA1 and over the course of multiple sessions in PFC. Despite both areas being highly engaged and synchronized during the task, we found no evidence for coordinated single cell or assembly activity during conditioning trials or aSWR. Taken together, our findings support the notion that persistent firing and reactivation of task-related neural activity patterns in CA1 and PFC support learning during classical conditioning.


Assuntos
Condicionamento Clássico , Hipocampo/fisiologia , Aprendizagem , Camundongos/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL
2.
Neurobiol Aging ; 96: 79-86, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950781

RESUMO

In recent years, aberrant neural oscillations in various cortical areas have emerged as a common physiological hallmark across mouse models of amyloid pathology and patients with Alzheimer's disease. However, much less is known about the underlying effect of amyloid pathology on single cell activity. Here, we used high-density silicon probe recordings from frontal cortex area of 9-month-old APP/PS1 mice to show that local field potential power in the theta and beta band is increased in transgenic animals, whereas single-cell firing rates, specifically of putative pyramidal cells, are significantly reduced. At the same time, these sparsely firing pyramidal cells phase-lock their spiking activity more strongly to the ongoing theta and beta rhythms. Furthermore, we demonstrated that the antiepileptic drug, levetiracetam, counteracts these effects by increasing pyramidal cell firing rates in APP/PS1 mice and uncoupling pyramidal cells and interneurons. Overall, our results highlight reduced firing rates of cortical pyramidal cells as a pathophysiological phenotype in APP/PS1 mice and indicate a potentially beneficial effect of acute levetiracetam treatment.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Amiloidose/tratamento farmacológico , Amiloidose/fisiopatologia , Lobo Frontal/citologia , Levetiracetam/farmacologia , Células Piramidais/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Levetiracetam/uso terapêutico , Masculino , Camundongos Transgênicos , Presenilina-1/genética
3.
J Neurosci ; 36(47): 12010-12026, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881785

RESUMO

Many of the sounds that we perceive are caused by our own actions, for example when speaking or moving, and must be distinguished from sounds caused by external events. Studies using macroscopic measurements of brain activity in human subjects have consistently shown that responses to self-generated sounds are attenuated in amplitude. However, the underlying manifestation of this phenomenon at the cellular level is not well understood. To address this, we recorded the activity of neurons in the auditory cortex of mice in response to sounds generated by their own behavior. We found that the responses of auditory cortical neurons to these self-generated sounds were consistently attenuated, compared with the same sounds generated independently of the animals' behavior. This effect was observed in both putative pyramidal neurons and in interneurons and was stronger in lower layers of auditory cortex. Downstream of the auditory cortex, we found that responses of hippocampal neurons to self-generated sounds were almost entirely suppressed. Responses to self-generated optogenetic stimulation of auditory thalamocortical terminals were also attenuated, suggesting a cortical contribution to this effect. Further analyses revealed that the attenuation of self-generated sounds was not simply due to the nonspecific effects of movement or behavioral state on auditory responsiveness. However, the strength of attenuation depended on the degree to which self-generated sounds were expected to occur, in a cell-type-specific manner. Together, these results reveal the cellular basis underlying attenuated responses to self-generated sounds and suggest that predictive processes contribute to this effect. SIGNIFICANCE STATEMENT: Distinguishing self-generated from externally generated sensory input poses a fundamental problem for behaving organisms. Our study in mice shows for the first time that responses of auditory cortical neurons are attenuated to sounds generated manually by the animals' own behavior. This effect is distinct from the nonspecific effect of behavioral activity on auditory responsiveness that has previously been reported and its magnitude is modulated by the probability with which self-generated sounds occur, suggesting an underlying predictive process. We also reveal how this effect varies across cell types and cortical layers. These findings lay a foundation for studying impairments in the processing of self-generated sounds, which are observed in psychiatric illness, in animal disease models.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Inibição Neural/fisiologia , Autoestimulação/fisiologia , Células Receptoras Sensoriais/fisiologia , Estimulação Acústica/métodos , Animais , Conscientização/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...