Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 753: 141791, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32890870

RESUMO

Anthropogenic emissions of nitrogen (N) and sulphur (S) compounds and their long-range transport have caused widespread negative impacts on different ecosystems. Critical loads (CLs) are deposition thresholds used to describe the sensitivity of ecosystems to atmospheric deposition. The CL methodology has been a key science-based tool for assessing the environmental consequences of air pollution. We computed CLs for eutrophication and acidification using a European long-term dataset of intensively studied forested ecosystem sites (n = 17) in northern and central Europe. The sites belong to the ICP IM and eLTER networks. The link between the site-specific calculations and time-series of CL exceedances and measured site data was evaluated using long-term measurements (1990-2017) for bulk deposition, throughfall and runoff water chemistry. Novel techniques for presenting exceedances of CLs and their temporal development were also developed. Concentrations and fluxes of sulphate, total inorganic nitrogen (TIN) and acidity in deposition substantially decreased at the sites. Decreases in S deposition resulted in statistically significant decreased concentrations and fluxes of sulphate in runoff and decreasing trends of TIN in runoff were more common than increasing trends. The temporal developments of the exceedance of the CLs indicated the more effective reductions of S deposition compared to N at the sites. There was a relation between calculated exceedance of the CLs and measured runoff water concentrations and fluxes, and most sites with higher CL exceedances showed larger decreases in both TIN and H+ concentrations and fluxes. Sites with higher cumulative exceedance of eutrophication CLs (averaged over 3 and 30 years) generally showed higher TIN concentrations in runoff. The results provided evidence on the link between CL exceedances and empirical impacts, increasing confidence in the methodology used for the European-scale CL calculations. The results also confirm that emission abatement actions are having their intended effects on CL exceedances and ecosystem impacts.

2.
Sci Total Environ ; 625: 1129-1145, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29996410

RESUMO

The international Long-Term Ecological Research Network (ILTER) encompasses hundreds of long-term research/monitoring sites located in a wide array of ecosystems that can help us understand environmental change across the globe. We evaluated long-term trends (1990-2015) for bulk deposition, throughfall and runoff water chemistry and fluxes, and climatic variables in 25 forested catchments in Europe belonging to the UNECE International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). Many of the IM sites form part of the monitoring infrastructures of this larger ILTER network. Trends were evaluated for monthly concentrations of non-marine (anthropogenic fraction, denoted as x) sulphate (xSO4) and base cations x(Ca+Mg), hydrogen ion (H+), inorganic N (NO3 and NH4) and ANC (Acid Neutralising Capacity) and their respective fluxes into and out of the catchments and for monthly precipitation, runoff and air temperature. A significant decrease of xSO4 deposition resulted in decreases in concentrations and fluxes of xSO4 in runoff, being significant at 90% and 60% of the sites, respectively. Bulk deposition of NO3 and NH4 decreased significantly at 60-80% (concentrations) and 40-60% (fluxes) of the sites. Concentrations and fluxes of NO3 in runoff decreased at 73% and 63% of the sites, respectively, and NO3 concentrations decreased significantly at 50% of the sites. Thus, the LTER/ICP IM network confirms the positive effects of the emission reductions in Europe. Air temperature increased significantly at 61% of the sites, while trends for precipitation and runoff were rarely significant. The site-specific variation of xSO4 concentrations in runoff was most strongly explained by deposition. Climatic variables and deposition explained the variation of inorganic N concentrations in runoff at single sites poorly, and as yet there are no clear signs of a consistent deposition-driven or climate-driven increase in inorganic N exports in the catchments.

3.
Glob Chang Biol ; 20(2): 429-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24132996

RESUMO

Chronic nitrogen (N) deposition is a threat to biodiversity that results from the eutrophication of ecosystems. We studied long-term monitoring data from 28 forest sites with a total of 1,335 permanent forest floor vegetation plots from northern Fennoscandia to southern Italy to analyse temporal trends in vascular plant species cover and diversity. We found that the cover of plant species which prefer nutrient-poor soils (oligotrophic species) decreased the more the measured N deposition exceeded the empirical critical load (CL) for eutrophication effects (P = 0.002). Although species preferring nutrient-rich sites (eutrophic species) did not experience a significantly increase in cover (P = 0.440), in comparison to oligotrophic species they had a marginally higher proportion among new occurring species (P = 0.091). The observed gradual replacement of oligotrophic species by eutrophic species as a response to N deposition seems to be a general pattern, as it was consistent on the European scale. Contrary to species cover changes, neither the decrease in species richness nor of homogeneity correlated with nitrogen CL exceedance (ExCLemp N). We assume that the lack of diversity changes resulted from the restricted time period of our observations. Although existing habitat-specific empirical CL still hold some uncertainty, we exemplify that they are useful indicators for the sensitivity of forest floor vegetation to N deposition.


Assuntos
Biodiversidade , Ecossistema , Eutrofização , Nitrogênio/metabolismo , Fenômenos Fisiológicos Vegetais , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...