Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur J Neurosci ; 58(4): 3074-3097, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37407275

RESUMO

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate brain activity through the application of low-intensity electrical currents. Based on its reported effects on corticospinal excitability (CSE), tDCS has been used to study cognition in healthy individuals and reduce symptoms in a variety of clinical conditions. Despite its increasing popularity as a research and clinical tool, high interindividual variability has been reported in the response to protocols using transcranial magnetic stimulation (TMS) to assess tDCS-induced changes in CSE leading to several nonsignificant findings. In this systematic review, studies that reported no significant modulation of CSE following tDCS were identified from PubMed and Embase (Ovid) databases. Forty-three articles were identified where demographic, TMS and tDCS parameters were extracted. Overall, stimulation parameters, CSE measurements and participant characteristics were similar to those described in studies reporting positive results and were likewise heterogeneous between studies. Small sample sizes and inadequate blinding were notable features of the reviewed studies. This systematic review suggests that studies reporting nonsignificant findings do not markedly differ from those reporting significant modulation of CSE.

2.
Neuroscience ; 452: 235-246, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246064

RESUMO

This study aimed at better understanding the neurochemistry underlying transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS) measurements as it pertains to GABAergic activity following administration of allosteric GABAA receptor agonist lorazepam. Seventeen healthy adults (8 females, 26.0 ±â€¯5.4 years old) participated in a double-blind, crossover, placebo-controlled study, where participants underwent TMS and MRS two hours after drug intake (placebo or lorazepam; 2.5 mg). Neuronavigated TMS measures reflecting cortical inhibition and excitation were obtained in the left primary motor cortex. Sensorimotor cortex and occipital cortex MRS data were acquired using a 3T scanner with a MEGA-PRESS sequence, allowing water-referenced [GABA] and [Glx] (glutamate + glutamine) quantification. Lorazepam administration decreased occipital [GABA], decreased motor cortex excitability and increased GABAA-receptor mediated motor cortex inhibition (short intracortical inhibition (SICI)). Lorazepam intake did not modulate sensorimotor [GABA] and TMS measures of intra-cortical facilitation, long-interval cortical inhibition, cortical silent period, and resting motor threshold. Furthermore, higher sensorimotor [GABA] was associated with higher cortical inhibition (SICI) following lorazepam administration, suggesting that baseline sensorimotor [GABA] may be valuable in predicting pharmacological or neuromodulatory treatment response. Finally, the differential effects of lorazepam on MRS and TMS measures, with respect to GABA, support the idea that TMS measures of cortical inhibition reflect synaptic GABAergic phasic inhibitory activity while MRS reflects extrasynaptic GABA.


Assuntos
Lorazepam , Córtex Motor , Adulto , Potencial Evocado Motor , Feminino , Humanos , Lorazepam/farmacologia , Espectroscopia de Ressonância Magnética , Masculino , Inibição Neural , Estimulação Magnética Transcraniana , Adulto Jovem
3.
Brain Res ; 1727: 146542, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712086

RESUMO

Alpha (8-12 Hz) and beta (13-30 Hz) oscillations are believed to be involved in motor control. Their modulation with transcranial alternating current stimulation (tACS) has been shown to alter motor behavior and cortical excitability. The aim of the present study was to determine whether tACS applied bilaterally over sensorimotor cortex at 10 Hz and 20 Hz modulates interhemispheric interactions and corticospinal excitability. Thirty healthy volunteers participated in a randomized, cross-over, sham-controlled, double-blind protocol. Sham and active tACS (10 Hz, 20 Hz, 1 mA) were applied for 20 min over bilateral sensorimotor areas. The physiological effects of tACS on corticospinal excitability and interhemispheric inhibition were assessed with transcranial magnetic stimulation. Physiological mirror movements were assessed to measure the overflow of motor activity to the contralateral M1 during voluntary muscle contraction. Bilateral 10 Hz tACS reduced corticospinal excitability. There was no significant effect of tACS on physiological mirror movements and interhemispheric inhibition. Ten Hz tACS was associated with response patterns consistent with corticospinal inhibition in 57% of participants. The present results indicate that application of tACS at the alpha frequency can induce aftereffects in sensorimotor cortex of healthy individuals.


Assuntos
Excitabilidade Cortical , Desempenho Psicomotor/fisiologia , Tratos Piramidais/fisiologia , Córtex Sensório-Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Estudos Cross-Over , Método Duplo-Cego , Potencial Evocado Motor , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Adulto Jovem
4.
Exp Brain Res ; 237(12): 3461-3474, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31734787

RESUMO

The purpose of the present study was to investigate the long-term stability of water-referenced GABA and Glx neurometabolite concentrations in the sensorimotor cortex using MRS and to assess the long-term stability of GABA- and glutamate-related intracortical excitability using transcranial magnetic stimulation (TMS). Healthy individuals underwent two sessions of MRS and TMS at a 3-month interval. A MEGA-PRESS sequence was used at 3 T to acquire MRS signals in the sensorimotor cortex. Metabolites were quantified by basis spectra fitting and metabolite concentrations were derived using unsuppressed water reference scans accounting for relaxation and partial volume effects. TMS was performed using published standards. After performing stability and reliability analyses for MRS and TMS, reliable change indexes were computed for all measures with a statistically significant test-retest correlation. No significant effect of time was found for GABA, Glx and TMS measures. There was an excellent ICC and a strong correlation across time for GABA and Glx. Analysis of TMS measure stability revealed an excellent ICC for rMT CSP and %MSO and a fair ICC for 2 ms SICI. There was no significant correlation between MRS and TMS measures at any time point. This study shows that MRS-GABA and MRS-Glx of the sensorimotor cortex have good stability over a 3-month period, with variability across time comparable to that reported in other brain areas. While resting motor threshold, %MSO and CSP were found to be stable and reliable, other TMS measures had greater variability and lesser reliability.


Assuntos
Potencial Evocado Motor/fisiologia , Ácido Glutâmico/metabolismo , Inibição Neural/fisiologia , Espectroscopia de Prótons por Ressonância Magnética , Córtex Sensório-Motor/fisiologia , Estimulação Magnética Transcraniana , Ácido gama-Aminobutírico/metabolismo , Adolescente , Adulto , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...