Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biol Cell ; 102(11): 581-91, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20712599

RESUMO

BACKGROUND INFORMATION: DC (dendritic cells) continuously capture pathogens and process them into small peptides within the endolysosomal compartment, the MIIC (MHC class II-containing compartment). In MIICs peptides are loaded on to MHC class II and rapidly redistributed to the cell surface. This redistribution is accompanied by profound changes of the MIICs into tubular structures. An emerging concept is that MIIC tubulation provides a means to transport MHC class II-peptide complexes to the cell surface, either directly or through vesicular intermediates. To obtain spatial information on the reorganization of the MIICs during DC maturation, we performed electron tomography on cryo-immobilized and freeze-substituted mouse DCs after stimulation with LPS (lipopolysaccharide). RESULTS: In non-stimulated DCs, MIICs are mostly spherical. After 3 h of LPS stimulation, individual MIICs transform into tubular structures. Three-dimensional reconstruction showed that the MIICs frequently display fusion profiles and after 6 h of LPS stimulation, MIICs become more interconnected, thereby creating large MIIC reticula. Microtubules and microfilaments align these MIICs and reveal physical connections. In our tomograms we also identified a separate population of MIIC-like intermediates, particularly at extended ends of MIIC tubules and in close proximity to the trans-Golgi network. No fusion events were captured between reticular MIICs and the plasma membrane. CONCLUSIONS: Our results indicate that MIICs have the capacity to fuse together, whereby the cytoskeleton possibly provides a scaffold for the MIIC shape change and directionality. MIIC-like intermediates may represent MHC class II carriers.


Assuntos
Membrana Celular/metabolismo , Células Dendríticas/citologia , Células Dendríticas/fisiologia , Genes MHC da Classe II , Animais , Fusão Celular , Células Dendríticas/efeitos dos fármacos , Tomografia com Microscopia Eletrônica , Lipopolissacarídeos/farmacologia , Camundongos , Microscopia Imunoeletrônica , Rede trans-Golgi
2.
Mol Immunol ; 44(14): 3462-72, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17485116

RESUMO

Mast cells are widely distributed throughout the body and express effector functions in allergic reactions, inflammatory diseases, and host defense. Activation of mast cells results in exocytosis of preformed chemical mediators and leads to novel synthesis and secretion of lipid mediators and cytokines. Here, we show that human mast cells also express and release the cytotoxic lymphocyte-associated protease, granzyme B. Granzyme B was active and localized in cytoplasmic granules, morphologically resembling those present in cytotoxic lymphocytes. Expression and release of granzyme B by mast cell-lines HMC-1 and LAD 2 and by cord blood- and mature skin-derived human mast cells depended on the mode of activation of these cells. In mast cell lines and cord blood-derived mast cells, granzyme B expression was mainly induced by non-physiological stimuli (A23187/PMA, Compound 48/80) and substance P. In contrast, mature skin-derived mast cells only produced granzyme B upon IgE-dependent stimulation. We conclude that granzyme B is expressed and released by human mast cells upon physiologic stimulation. This suggests a role for granzyme B as a novel mediator in mast cell biology.


Assuntos
Granzimas/metabolismo , Mastócitos/enzimologia , Mastócitos/metabolismo , Adulto , Antígenos/imunologia , Células Cultivadas , Indução Enzimática , Feminino , Regulação da Expressão Gênica , Granzimas/biossíntese , Humanos , Lactente , Lisossomos/metabolismo , Masculino , Mastócitos/citologia , Mastócitos/ultraestrutura , Mastocitose/enzimologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Perforina , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vesículas Secretórias/metabolismo , Serpinas/metabolismo , Triptases/metabolismo
3.
J Immunol ; 174(3): 1205-12, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15661874

RESUMO

Epithelial cells at environmental interfaces provide protection from potentially harmful agents, including pathogens. In addition to serving as a physical barrier and producing soluble mediators of immunity, such as cytokines or antimicrobial peptides, these cells are thought to function as nonprofessional APCs. In this regard, intestinal epithelial cells are particularly prominent because they express MHC class II molecules at the site of massive antigenic exposure. However, unlike bone marrow-derived professional APC, such as dendritic cells or B cells, little is known about the mechanisms of MHC class II presentation by the nonprofessional APC in vivo. The former use the lysosomal cysteine protease cathepsin S (Cat S), whereas thymic cortical epithelial cells use cathepsin L (Cat L) for invariant chain degradation and MHC class II maturation. Unexpectedly, we found that murine Cat S plays a critical role in invariant chain degradation in intestinal epithelial cells. Furthermore, we report that nonprofessional APC present a class II-bound endogenous peptide to naive CD4 T cells in vivo in a Cat S-dependent fashion. These results suggest that in vivo, both professional and nonprofessional MHC class II-expressing APC use Cat S, but not Cat L, for MHC class II-mediated Ag presentation.


Assuntos
Apresentação de Antígeno/imunologia , Catepsinas/fisiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Animais , Apresentação de Antígeno/genética , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Autoantígenos/imunologia , Autoantígenos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Catepsina L , Catepsinas/biossíntese , Catepsinas/deficiência , Catepsinas/genética , Cisteína Endopeptidases , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Imuno-Histoquímica , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Mol Biol Cell ; 16(2): 731-41, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15548590

RESUMO

Griscelli syndrome type 2 (GS2) is a genetic disorder in which patients exhibit life-threatening defects of cytotoxic T lymphocytes (CTLs) whose lytic granules fail to dock on the plasma membrane and therefore do not release their contents. The disease is caused by the absence of functional rab27a, but how rab27a controls secretion of lytic granule contents remains elusive. Mutations in Munc13-4 cause familial hemophagocytic lymphohistiocytosis subtype 3 (FHL3), a disease phenotypically related to GS2. We show that Munc13-4 is a direct partner of rab27a. The two proteins are highly expressed in CTLs and mast cells where they colocalize on secretory lysosomes. The region comprising the Munc13 homology domains is essential for the localization of Munc13-4 to secretory lysosomes. The GS2 mutant rab27aW73G strongly reduced binding to Munc13-4, whereas the FHL3 mutant Munc13-4Delta608-611 failed to bind rab27a. Overexpression of Munc13-4 enhanced degranulation of secretory lysosomes in mast cells, showing that it has a positive regulatory role in secretory lysosome fusion. We suggest that the secretion defects seen in GS2 and FHL3 have a common origin, and we propose that the rab27a/Munc13-4 complex is an essential regulator of secretory granule fusion with the plasma membrane in hematopoietic cells. Mutations in either of the two genes prevent formation of this complex and abolish secretion.


Assuntos
Lisossomos/metabolismo , Mastócitos/citologia , Mastócitos/metabolismo , Proteínas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Western Blotting , Linhagem Celular , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Células Jurkat , Células K562 , Mastócitos/ultraestrutura , Microscopia Imunoeletrônica , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Proteínas/ultraestrutura , Ratos , Proteínas Recombinantes/metabolismo , Radioisótopos de Enxofre/metabolismo , Linfócitos T Citotóxicos/metabolismo , Transfecção , Células U937 , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
5.
Traffic ; 5(12): 936-45, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15522096

RESUMO

In late endosomes and lysosomes of antigen presenting cells major histocompatibility complex class II (MHC II) molecules bind peptides from degraded internalized pathogens. These compartments are called MHC class II compartments (MIICs), and from here peptide-loaded MHC II is transported to the cell surface for presentation to helper T-lymphocytes to generate an immune response. Recent studies from our group in mouse dendritic cells indicate that the MHC class II on internal vesicles of multivesicular late endosomes or multivesicular bodies is the main source of MHC II at the plasma membrane. We showed that dendritic cell activation triggers a back fusion mechanism whereby MHC II from the inner membranes is delivered to the multivesicular bodies' outer membrane. Another type of MIIC in B-lymphocytes and dendritic cells is more related to lysosomes and often appears as a multilaminar organelle with abundant MHC II-enriched internal membrane sheets. These multilaminar lysosomes have a functioning peptide-loading machinery, but to date it is not clear whether peptide-loaded MHC II molecules from the internal membranes can make their way to the cell surface and contribute to T cell activation. To obtain detailed information on the membrane organization of multilaminar lysosomes and investigate possible escape routes from the lumen of this organelle, we performed electron tomography on cryo-immobilized B-lymphocytes and dendritic cells. Our high-resolution 3-D reconstructions of multilaminar lysosomes indicate that their membranes are organized in such a way that MHC class II may be trapped on the inner membranes, without the possibility to escape to the cell surface.


Assuntos
Células Apresentadoras de Antígenos/ultraestrutura , Antígenos de Histocompatibilidade Classe II/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/ultraestrutura , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Membranas Intracelulares/imunologia , Lisossomos/metabolismo , Microscopia Eletrônica , Proteínas Ribossômicas/metabolismo
6.
Am J Pathol ; 164(5): 1807-15, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111327

RESUMO

Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. Tumor exosomes may be involved in the sampling of antigens to antigen presenting cells or as decoys allowing the tumor to escape immune-directed destruction. The proteins present in exosomes secreted by tumor cells have been poorly defined. This study describes the protein composition of mesothelioma cell-derived exosomes in more detail. After electrophoresis of exosome preparations, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) was used to characterize the protein spots. MHC class I was found to be present together with the heat shock proteins HSC70 and HSP90. In addition, we found annexins and PV-1, proteins involved in membrane transport and function. Cytoskeleton proteins and their associated proteins ezrin, moesin, actinin-4, desmoplakin, and fascin were also detected. Besides the molecular motor kinesin-like protein, many enzymes were detected revealing the cytoplasmic orientation of exosomes. Most interesting was the detection of developmental endothelial locus-1 (DEL-1), which can act as a strong angiogenic factor and can increase the vascular development in the neighborhood of the tumor. In conclusion, mesothelioma cells release exosomes that express a discrete set of proteins involved in antigen presentation, signal transduction, migration, and adhesion. Exosomes may play an important role in the interaction between tumor cells and their environment.


Assuntos
Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Proteoma , Células Apresentadoras de Antígenos/química , Western Blotting , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Citoplasma/metabolismo , Citoesqueleto/metabolismo , DNA/química , Exocitose , Exorribonucleases , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP90/química , Teste de Histocompatibilidade , Humanos , Imuno-Histoquímica , Cariotipagem , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Microscopia Eletrônica , Proteínas/química , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Am J Pathol ; 164(3): 861-71, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14982840

RESUMO

Dendritic cell-lysosomal associated membrane protein (DC-LAMP)/CD208, a member of the lysosomal associated membrane protein (LAMP) family, is specifically expressed by human DCs on activation. However, its mouse counterpart could not be detected in mature DCs. The present study demonstrates that DC-LAMP is constitutively expressed by mouse, sheep, and human type II pneumocytes. Confocal and immunoelectron microscopy showed that mouse DC-LAMP protein co-localizes with lbm180, a specific marker for the limiting membrane of lamellar bodies that contain surfactant protein B, as well as with intracellular MHC class II molecules that accumulate in the same organelles. Expression of DC-LAMP was also occasionally detected at the cell surface of type II pneumocytes. Interestingly, human bronchioloalveolar carcinoma tumor cells, which correspond to transformed type II pneumocytes, express DC-LAMP. Similar observations were made in the Jaagsiekte sheep retrovirus-associated ovine pulmonary adenocarcinoma, a model of human bronchioloalveolar carcinoma. This study establishes that DC-LAMP is constitutively expressed in normal type II pneumocytes. Furthermore, DC-LAMP appears to be a marker of transformed type II pneumocytes as well, an observation that may help the study and the classification of human lung adenocarcinomas.


Assuntos
Antígenos CD/biossíntese , Biomarcadores Tumorais/análise , Células Dendríticas/imunologia , Células Dendríticas/ultraestrutura , Pulmão/citologia , Adenocarcinoma Bronquioloalveolar/metabolismo , Adenocarcinoma Bronquioloalveolar/patologia , Animais , Antígenos CD/ultraestrutura , Northern Blotting , Transformação Celular Neoplásica , Células Cultivadas , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Pulmão/ultraestrutura , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana Lisossomal , Camundongos , Microscopia Confocal , Microscopia Imunoeletrônica , Especificidade da Espécie
8.
Nature ; 425(6956): 397-402, 2003 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-14508489

RESUMO

Induction of cytotoxic T-cell immunity requires the phagocytosis of pathogens, virus-infected or dead tumour cells by dendritic cells. Peptides derived from phagocytosed antigens are then presented to CD8+ T lymphocytes on major histocompatibility complex (MHC) class I molecules, a process called "cross-presentation". After phagocytosis, antigens are exported into the cytosol and degraded by the proteasome. The resulting peptides are thought to be translocated into the lumen of the endoplasmic reticulum (ER) by specific transporters associated with antigen presentation (TAP), and loaded onto MHC class I molecules by a complex "loading machinery" (which includes tapasin, calreticulin and Erp57). Here we show that soon after or during formation, phagosomes fuse with the ER. After antigen export to the cytosol and degradation by the proteasome, peptides are translocated by TAP into the lumen of the same phagosomes, before loading on phagosomal MHC class I molecules. Therefore, cross-presentation in dendritic cells occurs in a specialized, self-sufficient, ER-phagosome mix compartment.


Assuntos
Apresentação de Antígeno , Células Dendríticas/citologia , Células Dendríticas/imunologia , Retículo Endoplasmático/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Fusão de Membrana , Fagossomos/metabolismo , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antígenos/imunologia , Antígenos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Cisteína Endopeptidases/metabolismo , Citosol/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Complexos Multienzimáticos/metabolismo , Ovalbumina/imunologia , Ovalbumina/metabolismo , Fagocitose , Fagossomos/imunologia , Fagossomos/ultraestrutura , Complexo de Endopeptidases do Proteassoma , Transporte Proteico
9.
Mol Biol Cell ; 14(7): 2900-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857873

RESUMO

The traditional view holds that peroxisomes are autonomous organelles multiplying by growth and division. More recently, new observations have challenged this concept. Herein, we present evidence supporting the involvement of the endoplasmic reticulum (ER) in peroxisome formation by electron microscopy, immunocytochemistry and three-dimensional image reconstruction of peroxisomes and associated compartments in mouse dendritic cells. We found the peroxisomal membrane protein Pex13p and the ATP-binding cassette transporter protein PMP70 present in specialized subdomains of the ER that were continuous with a peroxisomal reticulum from which mature peroxisomes arose. The matrix proteins catalase and thiolase were only detectable in the reticula and peroxisomes. Our results suggest the existence of a maturation pathway from the ER to peroxisomes and implicate the ER as a major source from which the peroxisomal membrane is derived.


Assuntos
Retículo Endoplasmático/ultraestrutura , Peroxissomos/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Células Cultivadas , Células Dendríticas/fisiologia , Células Dendríticas/ultraestrutura , Retículo Endoplasmático/fisiologia , Processamento de Imagem Assistida por Computador , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Peroxissomos/fisiologia
10.
Traffic ; 3(12): 894-905, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12453152

RESUMO

Immature dendritic cells efficiently capture exogenous antigens in peripheral tissues. In an inflammatory environment, dendritic cells are activated and become highly competent antigen-presenting cells. Upon activation, they lose their ability for efficient endocytosis and gain capability to migrate to secondary lymphoid organs. In addition, peptide loading of MHC class II molecules is enhanced and MHC class II/peptide complexes are redistributed from an intracellular location to the plasma membrane. Using immuno-electron microscopy, we show that activation of human monocyte-derived dendritic cells induced striking modifications of the lysosomal multilaminar MHC class II compartments (MIICs), whereby electron-dense tubules and vesicles emerged from these compartments. Importantly, we observed that MHC class II expression in these tubules/vesicles transiently increased, while multilaminar MIICs showed a strongly reduced labeling of MHC class II molecules. This suggests that formation of the tubules/vesicles from multilaminar MIICs could be linked to transport of MHC class II from these compartments to the cell surface. Further characterization of endocytic organelles with lysosomal marker proteins, such as the novel dendritic cell-specific lysosomal protein DC-LAMP, HLA-DM and CD68, revealed differential sorting of these markers to the tubules and vesicles.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/metabolismo , Genes MHC da Classe II , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Membrana Celular/metabolismo , Elétrons , Endocitose , Citometria de Fluxo , Antígenos HLA-D/metabolismo , Humanos , Imuno-Histoquímica , Cinética , Proteínas de Membrana Lisossomal , Lisossomos/metabolismo , Microscopia Confocal , Microscopia Imunoeletrônica , Monócitos/metabolismo , Fatores de Tempo
11.
Nat Immunol ; 3(11): 1069-74, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12368909

RESUMO

CD1d antigen presentation to natural killer T (NKT) cells expressing the semi-invariant T cell receptor V(alpha)14J(alpha)18 requires CD1d trafficking through endosomal compartments; however, the endosomal events remain undefined. We show that mice lacking the endosomal protease cathepsin L (catL) have greatly reduced numbers of V(alpha)14(+)NK1.1(+) T cells. In addition, catL expression in thymocytes is critical not only for selection of these cells in vivo but also for stimulation of V(alpha)14(+)NK1.1(+) T cells in vitro. CD1d cell-surface expression and intracellular localization appear normal in catL-deficient thymocytes, as does the lysosomal morphology; this implies a specific role for catL in regulating presentation of natural CD1d ligands mediating V(alpha)14(+)NK1.1(+) T cell selection. These data implicate lysosomal proteases as key regulators of not only classical major histocompatibility complex class II antigen presentation but also nonclassical CD1d presentation.


Assuntos
Apresentação de Antígeno/fisiologia , Catepsinas/fisiologia , Células Matadoras Naturais/citologia , Linfócitos T/enzimologia , Animais , Antígenos CD1/metabolismo , Antígenos CD1d , Transplante de Medula Óssea , Catepsina L , Catepsinas/deficiência , Catepsinas/genética , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Cruzamentos Genéticos , Cisteína Endopeptidases , Endossomos/enzimologia , Endossomos/ultraestrutura , Antígenos de Histocompatibilidade Classe II/imunologia , Células Matadoras Naturais/química , Ligantes , Ativação Linfocitária , Lisossomos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/análise , Quimera por Radiação , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Células Estromais/enzimologia , Linfócitos T/citologia , Timo/citologia
12.
Semin Cell Dev Biol ; 13(4): 303-11, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12243730

RESUMO

Multivesicular bodies (MVBs) are ubiquitous endocytic organelles containing numerous 50-80 nm vesicles. MVBs are very dynamic in shape and function. In antigen presenting cells (APCs), MVBs play a central role in the loading of major histocompatibility complex class II (MHC II) with antigenic peptides. How MHC II is transported from MVBs to the cell surface is only partly understood. One way involves direct fusion of MVBs with the plasma membrane. As a consequence, their internal vesicles are secreted as so-called exosomes. An alternative has been illustrated in maturing dendritic cells (DCs). Here, MVBs are reshaped into long tubules by back fusion of the internal vesicles with the MVB limiting membrane. Vesicles derived from the tips of these tubules then carry MHC II to the cell surface.


Assuntos
Apresentação de Antígeno/fisiologia , Células Apresentadoras de Antígenos/fisiologia , Células Apresentadoras de Antígenos/ultraestrutura , Vesículas Transportadoras/imunologia , Animais , Humanos
13.
Traffic ; 3(5): 321-30, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11967126

RESUMO

Exosomes are membrane vesicles with a diameter of 40-100 nm that are secreted by many cell types into the extracellular milieu. They correspond to the internal vesicles of an endosomal compartment, the multivesicular body and are released upon exocytic fusion of this organelle with the plasma membrane. Intracellularly, they are formed by inward budding of the endosomal membrane in a process that sequesters particular proteins and lipids. The unique composition of exosomes may confer specific functions on them upon secretion. Although their physiological role in vivo is far from being unraveled, it is apparent that they function in a multitude of processes, including intercellular communication during the immune response. Exosomes may have evolved early in the evolution of multicellular organisms and also seem to be important for tissue developmental processes.


Assuntos
Organelas/fisiologia , Células Apresentadoras de Antígenos/fisiologia , Fusão Celular
14.
J Biol Chem ; 277(21): 18266-71, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11884415

RESUMO

Tapasin is a subunit of the transporter associated with antigen processing (TAP). It associates with the major histocompatibility complex (MHC) class I. We show that tapasin interacts with beta- and gamma-subunits of COPI coatomer. COPI retrieves membrane proteins from the Golgi network back to the endoplasmic reticulum (ER). The COPI subunit-associated tapasin also interacts with MHC class I molecules suggesting that tapasin acts as the cargo receptor for packing MHC class I molecules as cargo proteins into COPI-coated vesicles. In tapasin mutant cells, neither TAP nor MHC class I are detected in association with the COPI coatomer. Interestingly, tapasin-associated MHC class I molecules are antigenic peptide-receptive and detected in both the ER and the Golgi. Our data suggest that tapasin is required for the COPI vesicle-mediated retrograde transport of immature MHC class I molecules from the Golgi network to the ER.


Assuntos
Antiporters/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulinas/metabolismo , Transporte Biológico , Linhagem Celular , Proteínas de Membrana Transportadoras , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...