Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(19): 196201, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804932

RESUMO

We report the quantitative adsorption structure of pristine graphene on Cu(111) determined using the normal incidence x-ray standing wave technique. The experiments constitute an important benchmark reference for the development of density functional theory approximations able to capture long-range dispersion interactions. Electronic structure calculations based on many-body dispersion-inclusive density functional theory are able to accurately predict the absolute measure and variation of adsorption height when the coexistence of multiple moiré superstructures is considered. This provides a structural model consistent with scanning probe microscopy results.

2.
Nanoscale ; 16(11): 5802-5812, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38426652

RESUMO

The role of the inorganic substrate termination, within the organic-inorganic interface, has been well studied for systems that contain strong localised bonding. However, how varying the substrate termination affects coordination to delocalised electronic states, like that found in aromatic molecules, is an open question. Azupyrene, a non-alternant polycyclic aromatic hydrocarbon, is known to bind strongly to metal surfaces through its delocalised π orbitals, thus yielding an ideal probe into delocalised surface-adsorbate interactions. Normal incidence X-ray standing wave (NIXSW) measurements and density functional theory calculations are reported for the adsorption of azupyrene on the (111), (110) and (100) surface facets of copper to investigate the dependence of the adsorption structure on the substrate termination. Structural models based on hybrid density functional theory calculations with non-local many-body dispersion yield excellent agreement with the experimental NIXSW results. No statistically significant difference in the azupyrene adsorption height was observed between the (111) and (100) surfaces. On the Cu(110) surface, the molecule was found to adsorb 0.06 ± 0.04 Å closer to the substrate than on the other surface facets. The most energetically favoured adsorption site on each surface, as determined by DFT, is subtly different, but in each case involved a configuration where the aromatic rings were centred above a hollow site, consistent with previous reports for the adsorption of small aromatic molecules on metal surfaces.

3.
J Phys Chem C Nanomater Interfaces ; 127(4): 1870-1880, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36761232

RESUMO

X-ray photoemission and X-ray absorption spectroscopy are important techniques to characterize chemical bonding at surfaces and are often used to identify the strength and nature of adsorbate-substrate interactions. In this study, we judge the ability of X-ray spectroscopic techniques to identify different regimes of chemical bonding at metal-organic interfaces. To achieve this, we sample different interaction strength regimes in a comprehensive and systematic way by comparing two topological isomers, azulene and naphthalene, adsorbed on three metal substrates with varying reactivity, namely the (111) facets of Ag, Cu, and Pt. Using density functional theory, we simulate core-level binding energies and X-ray absorption spectra of the molecular carbon species. The simulated spectra reveal three distinct characteristics based on the molecule-specific spectral features which we attribute to types of surface chemical bonding with varying strength. We find that weak physisorption only leads to minor changes compared to the gas-phase spectra, weak chemisorption leads to charge transfer and significant spectral changes, and strong chemisorption leads to a loss of the molecule-specific features in the spectra. The classification we provide is aimed at assisting interpretation of experimental X-ray spectra for complex metal-organic interfaces.

4.
ACS Nano ; 16(8): 11979-11987, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35916359

RESUMO

Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials such as graphene. The performance of graphene-based (opto-)electronic devices depends critically on the properties of the graphene/metal interfaces at the contacting electrodes. The question of how these interface properties depend on the ubiquitous topological defects in graphene is of high practical relevance, but could not be answered so far. Here, we focus on the prototypical Stone-Wales (S-W) topological defect and combine theoretical analysis with experimental investigations of molecular model systems. We show that the embedded defects undergo enhanced bonding and electron transfer with a copper surface, compared to regular graphene. These findings are experimentally corroborated using molecular models, where azupyrene mimics the S-W defect, while its isomer pyrene represents the ideal graphene structure. Experimental interaction energies, electronic-structure analysis, and adsorption distance differences confirm the defect-controlled bonding quantitatively. Our study reveals the important role of defects for the electronic coupling at graphene/metal interfaces and suggests that topological defect engineering can be used for performance control.

5.
J Phys Condens Matter ; 33(15)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33682682

RESUMO

X-ray photoemission (XPS) and near edge x-ray absorption fine structure (NEXAFS) spectroscopy play an important role in investigating the structure and electronic structure of materials and surfaces.Ab initiosimulations provide crucial support for the interpretation of complex spectra containing overlapping signatures. Approximate core-hole simulation methods based on density functional theory (DFT) such as the delta-self-consistent-field (ΔSCF) method or the transition potential (TP) method are widely used to predictK-shell XPS and NEXAFS signatures of organic molecules, inorganic materials and metal-organic interfaces at reliable accuracy and affordable computational cost. We present the numerical and technical details of our variants of the ΔSCF and TP method (coined ΔIP-TP) to simulate XPS and NEXAFS transitions. Using exemplary molecules in gas-phase, in bulk crystals, and at metal-organic interfaces, we systematically assess how practical simulation choices affect the stability and accuracy of simulations. These include the choice of exchange-correlation functional, basis set, the method of core-hole localization, and the use of periodic boundary conditions (PBC). We particularly focus on the choice of aperiodic or periodic description of systems and how spurious charge effects in periodic calculations affect the simulation outcomes. For the benefit of practitioners in the field, we discuss sensible default choices, limitations of the methods, and future prospects.

6.
Chemphyschem ; 22(11): 1065-1073, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33768634

RESUMO

Pyrene derivatives play a prominent role in organic electronic devices, including field effect transistors, light emitting diodes, and solar cells. The flexibility in the desired properties has previously been achieved by variation of substituents at the periphery of the pyrene backbone. In contrast, the influence of the topology of the central π-electron system on the relevant properties such as the band gap or the fluorescence behavior has not yet been addressed. In this work, pyrene is compared with its structural isomer azupyrene, which has a π-electron system with non-alternant topology. Using photoelectron spectroscopy, near edge X-ray absorption fine structure spectroscopy, and other methods, it is shown that the electronic band gap of azupyrene is by 0.72 eV smaller than that of pyrene. The difference of the optical band gaps is even larger with 1.09 eV, as determined by ultraviolet-visible absorption spectroscopy. The non-alternant nature of azupyrene is also associated with a more localized charge distribution. Further insight is provided by density functional theory (DFT) calculations of the molecular properties and ab initio coupled cluster calculations of the optical transitions. The concept of aromaticity is used to interpret the major topology-related differences.

7.
Chemistry ; 25(68): 15656-15661, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31544988

RESUMO

The binary lead fluoride Pb3 F8 was synthesized by the reaction of anhydrous HF with Pb3 O4 or by the reaction of BrF3 with PbF2 . The compound was characterized by single-crystal and powder X-ray diffraction, IR, Raman, and solid-state MAS 19 F NMR spectroscopy, as well as thermogravimetric analysis, XP and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Solid-state quantum-chemical calculations are provided for the vibrational analyses and band assignments. The electronic band structure offers an inside view of the mixed valence compound.

8.
J Phys Condens Matter ; 31(9): 094002, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30572324

RESUMO

Interfaces between organic semiconductors and metallic layers are ubiquitous in organic (opto-) electronic devices and can significantly influence their functionality. Here, we studied in situ prepared metal-organic interfaces, which were obtained by vapor deposition of metals (Co, Fe) onto organic semiconductor films (2H-tetraphenylporphyrin), with hard x-ray photoelectron spectroscopy. In these systems, the interphase zones, which are formed by diffusion and reaction of the metal in the organic material, can be clearly distinguished spectroscopically from the unreacted organic bulk, since they comprise the corresponding metalloporphyrins, CoTPP and FeTPP. In order to gain control over the thickness of the interphase layers, we varied process parameters such as sample temperature and metal-atom flux during interface preparation. We found that the temperature of the organic film during metal deposition was the only parameter that significantly influenced the formation of the interphase layers: their thicknesses were typically ~0.5 nm for deposition at 90 K, compared to ~1 nm at 300 K, irrespective of metal atom flux and chemical nature of the metal atom (Fe versus Co). Notably, these values are significantly smaller than the thicknesses of other metal/organics interphase regions reported in the literature.

9.
J Phys Condens Matter ; 30(38): 385501, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30102241

RESUMO

We investigated the compound 1T-Cu x Ta1-x S2 with respect to its synthesis, homogeneity range, structure and electronic properties. The average structure of 1T-Cu x Ta1-x S2 resembles that of the high-temperature phase of the layered transition metal dichalcogenide 1T-TaS2 in which tantalum is partially substituted by copper. 1T-Cu x Ta1-x S2 readily decomposes at elevated temperatures and can only be prepared and stabilized by a sufficiently high amount of sulfur excess. XPS and NEXAFS measurements reveal that copper has the oxidation state +I in 1T-Cu x Ta1-x S2, which is supported by quantum chemical calculations. The disorder introduced by copper doping causes an Anderson-type localization of the conduction electrons as manifested by a strong increase of the electrical resistivity and a Curie-type paramagnetism at low temperatures as in other doped systems 1T-M x Ta1-x S2 with higher valent metals. Quantum chemical calculations support this interpretation.

10.
Nanoscale ; 9(34): 12461-12469, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28813050

RESUMO

Heptacene was generated by surface-assisted didecarbonylation of an α-diketone precursor on a Ag(111) surface. Monitoring of the surface reaction and characterization of the adsorbed heptacene was performed with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and density functional theory (DFT) calculations. The surface-assisted formation of heptacene occurs around 460 K. Both the heptacene and the precursor molecules are oriented along the high-symmetry directions of the (111) surface and their molecular π systems face towards the substrate. The interaction with the Ag(111) substrate is not laterally uniform, but appears to be strongest on the central part of the molecule, in line with the expectations from Clar's rule. In the STM images, heptacene shows a dumbbell shape, which may correspond to the substantial out-of-plane deformations of heptacene on Ag(111). As revealed by DFT, the center of the molecule is closer to the surface than the outer parts. In addition, the inner rings are most affected by charge redistribution between surface and molecule. Heptacene acts as an acceptor and receives a negative charge of -0.6e from the Ag(111) surface. Since vacuum-sublimable α-diketone precursors for even larger acenes are available, the approach is promising for the on-surface synthesis of higher acene homologues such as octacene and nonacene.

11.
Phys Chem Chem Phys ; 18(44): 30643-30651, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27790657

RESUMO

The interface formation upon vapor deposition of a metal onto a molecular organic semiconductor was studied using a well-defined complexation reaction between a metal and a porphyrin. Specifically, metallic cobalt (Co) was vapor deposited onto a thin film of 2H-tetraphenylporphyrin (2HTPP) at room temperature. The resulting interface was probed with Hard X-ray Photoelectron Spectroscopy (HAXPES) using photon energies between 2 and 6 keV to obtain a detailed depth profile of the chemical composition. Characteristic changes in the N 1s core level signals reveal the formation of a cobalt tetraphenylporphyrin (CoTPP) layer between the Co and 2HTPP layers. Assuming an abrupt interface between CoTPP and 2HTPP (layer-by-layer model), analysis of the XPS data results in a thickness of the CoTPP reaction layer of 1.6 nm. However, a more advanced numerical analysis allowed us to reconstruct details of the actual depth distribution of the CoTPP interphase layer: up to a depth of 1.5 nm, all 2HTPP molecules were converted into CoTPP. Beyond this depth, the CoTPP concentration decreases sharply within 0.15 nm to zero.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...