Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(3): 3493-3505, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30592596

RESUMO

Magnesium alloys, with a density two-thirds that of aluminum, are very attractive for the industry. However, these alloys are extremely susceptible to corrosion in the presence of aggressive electrolytes such as NaCl solutions. Here, we designed hybrid coatings obtained by the consolidation of organically modified polysilsesquioxanes called "melting gels" for the corrosion protection of AZ31 magnesium alloy in NaCl solutions. The main focus was to study the interaction between coatings and substrate and the influence of the coating thickness on the final properties. Micro-scratch tests, adhesion by tape tests, confocal Raman microscopy, SEM-EDS, and ToF-SIMS indicate good adhesion of coatings based on the interaction of melting gels and substrate. These measurements indicate the presence of the Si-O-Mg bonds between the substrate and coatings. Electrochemical results show very low current densities (10-13 A cm-2) without any breakdown potential and impedance values of 1010 Ω cm2.

2.
ACS Appl Mater Interfaces ; 10(13): 11175-11188, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29542909

RESUMO

Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.

3.
Dalton Trans ; 46(11): 3729-3741, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28262904

RESUMO

This study is focused on structural characterization of hybrid glasses obtained by consolidation of melting gels. The melting gels were prepared in molar ratios of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) of 75%MTES-25%DMDES and 65%MTES-35%DMDES. Following consolidation, the hybrid glasses were characterized using Raman, 29Si and 13C Nuclear Magnetic Resonance (NMR) spectroscopies, synchrotron Small Angle X-Ray Scattering (SAXS) and scanning electron microscopy (SEM). Raman spectroscopy revealed the presence of Si-C bonds in the hybrid glasses and 8-membered ring structures in the Si-O-Si network. Qualitative NMR spectroscopy identified the main molecular species, while quantitative NMR data showed that the ratio of trimers (T) to dimers (D) varied between 4.6 and 3.8. Two-dimensional 29Si NMR data were used to identify two distinct types of T3 environments. SAXS data showed that the glasses are homogeneous across the nm to micrometer length scales. The scattering cross section was one thousand times lower than what is expected when phase separation occurs. The SEM images show a uniform surface without defects, in agreement with the SAXS results, which further supports that the hybrid glasses are nonporous.

4.
J Electron Microsc (Tokyo) ; 54(3): 309-15, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16123067

RESUMO

We demonstrate nanostructural evolution resulting in highly increased photoluminescence in silicates doped with Er3+ ions. High-resolution transmission electron microscopy (HRTEM) imaging, nano-energy dispersed X-ray (NEDX) spectroscopy, X-ray diffraction (XRD) and photoluminescence analysis confirm the local composition and structure changes of the Er3+ ions upon thermal annealing. We studied two types of amorphous nanopowder: the first is of the composition SiO2/18Al2O3/2Er2O3 (SAE), synthesized by combustion flame-chemical vapor condensation, and the second is with a composition of SiO2/8Y2O3/2Er2O3 (SYE), synthesized by sol-gel synthesis (composition in mol%). Electron diffraction and HRTEM imaging clearly show the formation of nanocrystallites with an average diameter of approximately 8 nm in SAE samples annealed at 1000 degrees C and SYE samples annealed at 1200 degrees C. The volume fraction of the nanocrystalline phase increased with each heat treatment, eventually leading to complete devitrification at 1400 degrees C. Further XRD and NEDX analysis indicates that the nanocrystalline phase has the pyrochlore structure with the formula Er(x)Al(2-x)Si2O7 or Er(x)Y(2-x)Si2O7 and a surrounding silica matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...