Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 13: 804742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345641

RESUMO

Multimedia learning theories suggest presenting associated pieces of information in spatial and temporal contiguity. New technologies like Augmented Reality allow for realizing these principles in science laboratory courses by presenting virtual real-time information during hands-on experimentation. Spatial integration can be achieved by pinning virtual representations of measurement data to corresponding real components. In the present study, an Augmented Reality-based presentation format was realized via a head-mounted display and contrasted to a separate display, which provided a well-arranged data matrix in spatial distance to the real components and was therefore expected to result in a spatial split-attention effect. Two groups of engineering students (N = 107; Augmented Reality vs. separate display) performed six experiments exploring fundamental laws of electric circuits. Cognitive load and conceptual knowledge acquisition were assessed as main outcome variables. In contrast to our hypotheses and previous findings, the Augmented Reality group did not report lower extraneous load and the separate display group showed higher learning gains. The pre- and posttest assessing conceptual knowledge were monitored by eye tracking. Results indicate that the condition affected the visual relevancy of circuit diagrams to final problem completion. The unexpected reverse effects could be traced back to emphasizing coherence formation processes regarding multiple measurements.

2.
Front Psychol ; 13: 1012787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687809

RESUMO

Multiple external representations (e.g., diagrams, equations) and their interpretations play a central role in science and science learning as research has shown that they can substantially facilitate the learning and understanding of science concepts. Therefore, multiple and particularly visual representations are a core element of university physics. In electrodynamics, which students encounter already at the beginning of their studies, vector fields are a central representation typically used in two forms: the algebraic representation as a formula and the visual representation depicted by a vector field diagram. While the former is valuable for quantitative calculations, vector field diagrams are beneficial for showing many properties of a field at a glance. However, benefiting from the mutual complementarity of both representations requires representational competencies aiming at referring different representations to each other. Yet, previous study results revealed several student problems particularly regarding the conceptual understanding of vector calculus concepts. Against this background, we have developed research-based, multi-representational learning tasks that focus on the visual interpretation of vector field diagrams aiming at enhancing a broad, mathematical as well as conceptual, understanding of vector calculus concepts. Following current trends in education research and considering cognitive psychology, the tasks incorporate sketching activities and interactive (computer-based) simulations to enhance multi-representational learning. In this article, we assess the impact of the learning tasks in a field study by implementing them into lecture-based recitations in a first-year electrodynamics course at the University of Göttingen. For this, a within- and between-subjects design is used comparing a multi-representational intervention group and a control group working on traditional calculation-based tasks. To analyze the impact of multiple representations, students' performance in a vector calculus test as well as their perceived cognitive load during task processing is compared between the groups. Moreover, analyses offer guidance for further design of multi-representational learning tasks in field-related physics topics.

3.
Front Psychol ; 11: 2090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973629

RESUMO

Domain-specific understanding of digitally represented graphs is necessary for successful learning within and across domains in higher education. Two recent studies conducted a cross-sectional analysis of graph understanding in different contexts (physics and finance), task concepts, and question types among students of physics, psychology, and economics. However, neither changes in graph processing nor changes in test scores over the course of one semester have been sufficiently researched so far. This eye-tracking replication study with a pretest-posttest design examines and contrasts changes in physics and economics students' understanding of linear physics and finance graphs. It analyzes the relations between changes in students' gaze behavior regarding relevant graph areas, scores, and self-reported task-related confidence. The results indicate domain-specific, context- and concept-related differences in the development of graph understanding over the first semester, as well as its successful transferability across the different contexts and concepts. Specifically, we discovered a tendency of physics students to develop a task-independent overconfidence in the graph understanding during the first semester.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...