Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; : 107260, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945177

RESUMO

OBJECTIVES: The proliferation of metallo-beta-lactamase-producing Pseudomonas aeruginosa represents a significant public health threat. P. aeruginosa can undergo significant phenotypic changes that can drastically impair antibiotic efficacy. This study's objectives were (1) to quantify the time-course of killing of VIM-2-producing P. aeruginosa in response to aztreonam-based therapies (including avibactam for coverage of AmpC), and (2) to document the capacity of P. aeruginosa to undergo morphological transformations that facilitate persistence. METHODS: A well-characterized, clinical VIM-2-producing P. aeruginosa was studied in the Hollow Fiber Infection Model (HFIM) over 9 days (7 days of active antibiotic therapy, 2 days treatment withdrawal) at a 107.5 CFU/mL starting inoculum. HFIM treatment arms included: growth control, aztreonam, ceftazidime/avibactam, aztreonam/|ceftazidime/|avibactam, polymyxin B, and aztreonam/|ceftazidime/|avibactam/|polymyxin B. In addition, real-time imaging studies were conducted under static conditions to determine the time-course of the reversion of persister cells. RESULTS: A pronounced discrepancy was observed between OD620 and bacterial counts obtained from plating methods (hereafter referred to as 'OD-count discrepancy'). For aztreonam monotherapy, observed counts were 0 CFU/mL by 120 h. Despite this, there was a significant OD-count discrepancy as compared to the pre-treatment 0h. Between therapy withdrawal at 168h and 216h, all arms with suppressed counts had re-grown to the system carrying capacity. Real-time imaging of the P. aeruginosa filaments after drug removal showed rapid reversion from a long, filamentous phenotype to many individual rods within 2 h. CONCLUSION: Managing MBL-producing P. aeruginosa will require a multi-faceted approach, focused on maximizing killing and minimizing proliferation of resistant and persistent subpopulations, which will involve eliminating drug-induced phenotypic transformers.

2.
Clin Pharmacol Ther ; 115(4): 896-905, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38062797

RESUMO

Developing optimized regimens for combination antibiotic therapy is challenging and often performed empirically over many clinical studies. Novel implementation of a hybrid machine-learning pharmacokinetic/pharmacodynamic/toxicodynamic (ML-PK/PD/TD) approach optimizes combination therapy using human PK/TD data along with in vitro PD data. This study utilized human population PK (PopPK) of aztreonam, ceftazidime/avibactam, and polymyxin B along with in vitro PDs from the Hollow Fiber Infection Model (HFIM) to derive optimal multi-drug regimens de novo through implementation of a genetic algorithm (GA). The mechanism-based PD model was constructed based on 7-day HFIM experiments across 4 clinical, extensively drug resistant Klebsiella pneumoniae isolates. GA-led optimization was performed using 13 different fitness functions to compare the effects of different efficacy (60%, 70%, 80%, or 90% of simulated subjects achieving bacterial counts of 102 CFU/mL) and toxicity (66% of simulated subjects having a target polymyxin B area under the concentration-time curve [AUC] of 100 mg·h/L and aztreonam AUC of 1,332 mg·h/L) on the optimized regimen. All regimens, except those most heavily weighted for toxicity prevention, were able to achieve the target efficacy threshold (102 CFU/mL). Overall, GA-based regimen optimization using preclinical data from animal-sparing in vitro studies and human PopPK produced clinically relevant dosage regimens similar to those developed empirically over many years for all three antibiotics. Taken together, these data provide significant insight into new therapeutic approaches incorporating ML to regimen design and treatment of resistant bacterial infections.


Assuntos
Aztreonam , Polimixina B , Animais , Humanos , Aztreonam/farmacologia , Saúde Pública , Antibacterianos/efeitos adversos , Bactérias Gram-Negativas
3.
Nanotechnology ; 33(8)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34787108

RESUMO

Charge transport physics in InAs/GaSb bi-layer systems has recently attracted attention for the experimental search for two-dimensional topological superconducting states in solids. Here we report measurement of charge transport spectra of nano devices consisting of an InAs/GaSb quantum well sandwiched by tantalum superconductors. We explore the current-voltage relation as a function of the charge-carrier density in the quantum well controlled by a gate voltage and an external magnetic field. We observe three types of differential resistance peaks, all of which can be effectively tuned by the external magnetic field, and, however, two of which appear at electric currents independent of the gate voltage, indicating a dominant mechanism from the superconductor and the system geometry. By analyzing the spectroscopic features, we find that the three types of peaks identify Andreev reflections, quasi-particle interference, and superconducting transitions in the device, respectively. Our results provide a basis for further exploration of possible topological superconducting state in the InAs/GaSb system.

4.
Nano Lett ; 19(7): 4620-4626, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181166

RESUMO

Strong coupling of an intersubband (ISB) electron transition in quantum wells to a subwavelength plasmonic nanoantenna can give rise to intriguing quantum phenomena, such as ISB polariton condensation, and enable practical devices including low threshold lasers. However, experimental observation of ISB polaritons in an isolated subwavelength system has not yet been reported. Here, we use scanning probe near-field microscopy and Fourier-transform infrared (FTIR) spectroscopy to detect formation of ISB polariton states in a single nanoantenna. We excite the nanoantenna by a broadband IR pulse and spectrally analyze evanescent fields on the nanoantenna surface. We observe the distinctive splitting of the nanoantenna resonance peak into two polariton modes and two π-phase steps corresponding to each of the modes. We map ISB polariton dispersion using a set of nanoantennae of different sizes. This nano-FTIR spectroscopy approach opens doors for investigations of ISB polariton physics in the single subwavelength nanoantenna regime.

5.
Sci Rep ; 8(1): 16694, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420700

RESUMO

We study semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using spectroscopic ellipsometry as well as theoretically using a new microscopic theory. The theory is a combination of microscopic density matrix approach for the material response and Green's function approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as well as effective dielectric functions that can be used to describe a homogenized SHM.

6.
Sci Rep ; 6: 34746, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703223

RESUMO

The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

7.
Nat Commun ; 6: 7667, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26126879

RESUMO

Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 µm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

8.
Nano Lett ; 15(3): 1959-66, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25625404

RESUMO

Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. This collocation and interaction often leads to strong coupling. Here, we present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. The system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...