Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Inorg Biochem ; 215: 111317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310459

RESUMO

Palladium catalysed reactions are ubiquitous in synthetic organic chemistry in both organic solvents and aqueous buffers. The broad reactivity of palladium catalysis has drawn interest as a means to conduct orthogonal transformations in biological settings. Successful examples have been shown for protein modification, in vivo drug decaging and as palladium-protein biohybrid catalysts for selective catalysis. Biological media represents a challenging environment for palladium chemistry due to the presence of a multitude of chelators, catalyst poisons and a requirement for milder reaction conditions e.g. lower temperatures. This review looks to identify successful examples of palladium-catalysed reactions in the presence of proteins or cells and analyse solutions to help to overcome the challenges of working in biological systems.


Assuntos
Paládio/química , Paládio/metabolismo , Catálise , Quelantes/metabolismo , Cisteína/metabolismo , Humanos , Proteínas/metabolismo , Solventes , Elementos de Transição
2.
Sci Rep ; 9(1): 1721, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30742022

RESUMO

Electrocaloric materials have become a viable technology for solid state heat management applications. We demonstrate both theoretically and experimentally that liquid crystals (LCs) can be exploited as efficient electrocaloric materials. Numerical and experimental investigations determine the conditions under which the strongest electrocaloric effect (ECE) responses are expected in LCs. Specifically, we show that a large ECE can be expected at the isotropic-nematic and in particular at the isotropic-smectic A phase transition. In our theoretical study, LC ordering is modelled using a Landau - de Gennes - Ginzburg mesoscopic approach. The simulation results are in qualitative agreement with our high precision electrocaloric measurements conducted on 8CB and 12CB liquid crystals. In the latter, we obtained ΔTEC ~ 6.5 K, corresponding to the largest response measured so far in LCs. The fluid property of LC electrocaloric heat cooling elements could lead to the development of devices with a higher coefficient of performance and thus better cooling power yield per mass of the ECE-based device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...