Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 47(5): 758-769, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34032548

RESUMO

The freeze-drying process is an expensive, time-consuming and rather complex process. Therefore, process analytical technology (PAT) tools have been introduced to develop an optimized process and control critical process parameters, which affect the final product quality. The aim of the present work was to study the applicability of at-line near-infrared (NIR) and Raman spectroscopy approach in the monitoring of the freeze-drying process. Freeze-dried powders, which were developed previously, were manufactured as a multi-component system, containing ibuprofen (IBP). The NIR proved to be a useful tool for the monitoring of the freeze-drying process, since it was able to determine residual moisture content (RMC) and hence predict its values by using the partial least square (PLS) model. In addition, the evaluation of the correlation between the NIR and off-line HPLC IBP content results showed that NIR spectra were consistent with the HPLC measurements, even though overlapping absorption bands in multi-component system were observed. This research also studied the ability of using the at-line Raman measurements for the evaluation of the crystallinity and polymorphic transformations during the process, such as IBP ionization and mannitol polymorphism. The results were in correlation with XRPD results, but parameters of PLS models were not optimal. Nevertheless, this approach still assured better process understanding. To conclude, high applicability of the at-line NIR in the monitoring of the freeze-dried powder production was successfully demonstrated, suggesting that it can be used as a single tool to monitor RMC and IBP content as well as process deviations during the freeze-drying process.


Assuntos
Ibuprofeno , Espectroscopia de Luz Próxima ao Infravermelho , Liofilização , Análise dos Mínimos Quadrados , Análise Espectral Raman
2.
ACS Appl Mater Interfaces ; 6(20): 18205-14, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25249034

RESUMO

The epitaxial growth of functional oxides on silicon substrates requires atomically defined surfaces, which are most effectively prepared using Sr-induced deoxidation. The manipulation of metallic Sr is nevertheless very delicate and requires alternative buffer materials. In the present study the applicability of the chemically much more stable SrO in the process of native-oxide removal and silicon-surface stabilization was investigated using the pulsed-laser deposition technique (PLD), while the as-derived surfaces were analyzed in situ using reflection high-energy electron diffraction and ex situ using X-ray photoelectron spectroscopy, X-ray reflectivity, and atomic force microscopy. After the deposition of the SrO over Si/SiO2, in a vacuum, different annealing conditions, with the temperature ranging up to 850 °C, were applied. Because the deposition took place in a vacuum, a multilayer composed of SrO, Sr-silicate, modified Si, and Si as a substrate was initially formed. During the subsequent annealing the topmost layer epitaxially orders in the form of islands, while a further increase in the annealing temperature induced rapid desorption and surface deoxidation, leading to a 2 × 1 Sr-reconstructed silicon surface. However, the process is accompanied by distinctive surface roughening, and therefore the experimental conditions must be carefully optimized to minimize the effect. The results of the study revealed, for the first time, an effective pathway for the preparation of a SrO-induced buffer layer on a silicon substrate using PLD, which can be subsequently utilized for the epitaxial growth of functional oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...