Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 18(5): 1352-63, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22213523

RESUMO

Compounds 1-3, composed of two guanidiniocarbonylpyrrole moieties linked by oligoamide bridges and differing in number and type of basic groups, were prepared. The sites and degree of protonation of 1-3 depend strongly on the pH value. The interactions of these compounds with several double-stranded (ds) DNA and dsRNA were investigated by means of UV/Vis and CD spectroscopy as well as isothermal titration microcalorimetry (ITC). These studies revealed that the binding of 1-3 to the polynucleotides is driven by three factors, the presence of aliphatic amino groups, the protonation state of the compounds, and the steric properties of the polynucleotide binding site, that is, the shape and structure of their grooves. The results obtained by all applied methods consistently indicated that receptors 1-3 bind to the minor groove of DNA, but, by contrast, to the major groove of RNA. Additionally, it was shown by atomic force microscopy (AFM) imaging that upon interaction of compound 2 with calf thymus (ct) DNA induced aggregation of the DNA occurs, leading to pronounced changes in its secondary structure.


Assuntos
DNA/química , Guanidinas/química , Pirróis/química , RNA de Cadeia Dupla/química , Dicroísmo Circular , Relação Dose-Resposta a Droga , Guanidinas/síntese química , Microscopia de Força Atômica , Modelos Químicos , Estrutura Molecular , Polinucleotídeos/química , Pirróis/síntese química , RNA de Cadeia Dupla/metabolismo
2.
Pulm Pharmacol Ther ; 22(4): 297-304, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19254776

RESUMO

Acute respiratory failure in neonates (e.g. ARDS, meconium aspiration pneumonitis, pneumonia) is characterized by an excessive inflammatory response, governing the migration of polymorpho-nuclear leukocytes (PMNLs) into lung tissue and causing consecutive impairment of gas exchange and lung function. Critical to this inflammatory response is the activation of nuclear factor-kappaB (NF-kappaB) that is required for transcription of the genes for many pro-inflammatory mediators. We asked whether the inhibition of NF-kappaB activity using either a selective inhibitor (IKK-NBD peptide) or dexamethasone would be more effective in decreasing NF-kappaB activity and chemokine expression in pulmonary cells. Changes in lung function were repeatedly assessed for 24h following induction of acute respiratory failure and therapeutic intervention. We conducted a randomized, controlled, prospective animal study with mechanically ventilated newborn piglets which underwent repeated airway lavage (20+/-2 [SEM]) to remove surfactant and to induce lung inflammation. Admixed to 100 mg kg(-1) surfactant, piglets then received either IKK-NBD peptide (S+IKK), a selective inhibitor of NF-kappaB activation, its control peptide without intrinsic activity, dexamethasone (S+Dexa), its solvent aqua, or an air bolus only (all groups n=8). After 24h of mechanical ventilation, the following differences were measured: PaO(2)/FiO(2) (S+IKK 230+/-9 mm Hg vs. S+Dexa 188+/-14, p<0.05); ventilation efficiency index (0.18+/-0.01 [3800/(PIP-PEEP)(*)f(*)PaCO(2)] vs. 0.14+/-0.01, p<0.05); extravascular lung water (24+/-1 ml kg(-1) vs. 29+/-2, p<0.05); PMNL in BAL fluid (112+/-21 cells microl(-1) vs. 208+/-34, p<0.05), IL-8 (351+/-117 pg ml(-1) vs. 491+/-144, p=ns) and leukotriene B(4) (23+/-7 pg ml(-1) vs. 71+/-11, p<0.01) in BAL fluid. NF-kappaB activity in the nucleus of pulmonary cells differed by 32+/-5% vs. 55+/-3, p<0.001. Differences between these two intervention groups were more pronounced in the second half of the observation period (hours 12-24). At 24h of mechanical ventilation, inhibition of NF-kappaB activity by IKK-NBD peptide admixed to surfactant as a carrier caused improved gas exchange, lung function and reduced pulmonary inflammation, as evidenced by reduction in PMNL migration into lung tissue due to reduced nuclear NF-kappaB activity. We conclude that IKK-NBD admixture to surfactant in acute neonatal respiratory failure is superior to dexamethasone administration within the first 24h.


Assuntos
Animais Recém-Nascidos/fisiologia , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Inflamação/complicações , Inflamação/patologia , Pneumopatias/patologia , Pneumopatias/prevenção & controle , NF-kappa B/antagonistas & inibidores , Doenças Respiratórias/complicações , Doenças Respiratórias/patologia , Doença Aguda , Animais , Contagem de Células Sanguíneas , Líquido da Lavagem Broncoalveolar/citologia , Interleucina-8/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/fisiologia , Tamanho do Órgão , Troca Gasosa Pulmonar , Surfactantes Pulmonares/uso terapêutico , Respiração Artificial/efeitos adversos , Suínos
3.
Am J Respir Crit Care Med ; 177(11): 1233-41, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18310483

RESUMO

RATIONALE: In acute inflammatory lung disease in newborn infants, exogenous surfactant only transiently improves lung function. We hypothesized that the transient nature of this protection is in part explained by elevated acid sphingomyelinase (a-SMase) activity that may inactivate surfactant and promote proinflammatory responses. OBJECTIVES: We investigated the intermediate-term effects (>12 h) of a-SMase inhibition in a neonatal piglet model of repeated airway lavage by the intratracheal use of the a-SMase inhibitor imipramine, together with exogenous surfactant as a carrier substance. METHODS: After surfactant washout and induction of pulmonary inflammation, lung function was monitored over 24 hours of mechanical ventilation and followed by ex vivo analyses. In addition, we studied the effect of lipopolysaccharide inhalation in a-SMase-deficient mice at 48 hours. MEASUREMENTS AND MAIN RESULTS: Surfactant washout increased both pulmonary a-SMase activity and ceramide content; this was attenuated by surfactant and prevented in the surfactant plus imipramine group. Compared with surfactant alone, Pa(O(2)), dynamic compliance, and extravascular lung water were improved in the final 12 hours in the surfactant plus imipramine group. At 24 hours, lavage fluid leukocyte counts and IL-8 concentrations decreased, and physical surfactant film properties improved. In the mouse model at 48 hours, a-SMase-deficient mice showed reduced pulmonary ceramide levels and attenuated leukocyte influx into the alveolar space. CONCLUSIONS: We conclude that stabilization of exogenous surfactant by adding imipramine to create a "fortified surfactant preparation" improves lung function in a clinically relevant piglet model, and that this effect can be attributed to the inhibition of a-SMase as evidenced in the mouse model.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Imipramina/uso terapêutico , Troca Gasosa Pulmonar/fisiologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/fisiopatologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Lavagem Broncoalveolar , Ceramidas/metabolismo , Modelos Animais de Doenças , Complacência Pulmonar/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Edema Pulmonar/etiologia , Edema Pulmonar/metabolismo , Edema Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/etiologia , Suínos , Fatores de Tempo
4.
Crit Care Med ; 35(10): 2309-18, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17944019

RESUMO

OBJECTIVE: In acute respiratory distress syndrome of term newborn infants, surfactant replacement may be effective because endogenous surfactant is decreased and structurally changed. Inflammation is central to acute respiratory distress syndrome, and hence, attenuation of proinflammatory transcription factor nuclear factor (NF)-[kappa]B activation in the lung might prevent secondary loss of surfactant function. In this study, we tested the hypothesis that the topical use of a NF-[kappa]B inhibitor (I[kappa]B kinase-NF-[kappa]B essential modulator binding domain [IKK-NBD] peptide), together with surfactant as a carrier substance, improves surfactant function by attenuation of pulmonary inflammation during 24 hrs of mechanical ventilation in a neonatal piglet model of acute respiratory distress syndrome by repeated airway lavage. DESIGN: Prospective, randomized, controlled study. SETTING: Research laboratory of a university children's hospital. SUBJECTS: A total of 24 anesthetized, mechanically ventilated newborn piglets. INTERVENTIONS: After 20 +/- 6 (mean +/- sd) lavages to induce lung failure and inflammation, a porcine surfactant (100 mg/kg) with (S+IKK) or without (S) 1.25 mg of IKK-NBD peptide, or an air bolus (control) was administered into the airways. Lung function was monitored throughout 24 hrs of mechanical ventilation and completed by ex vivo analyses. MEASUREMENTS AND MAIN RESULTS: Pao2 (S+IKK, 125 +/- 16 mm Hg; S, 105 +/- 33; control, 61 +/- 20), ventilation efficiency index, functional residual capacity, compliance of the respiratory system, and extravascular lung water (S+IKK, 24 +/- 2 mL/kg; S, 30 +/- 7; control, 34 +/- 8) were all significantly improved in S+IKK piglets after 24 hrs. Decreased leukocyte concentrations in bronchoalveolar lavage (S+IKK, 152 +/- 94 cells/microL; S, 202 +/- 100; control, 276 +/- 57) were observed together with reduced acid sphingomyelinase activity, lowered ceramide concentrations, improved surfactant function (minimum surface tension: S+IKK, 10.8 +/- 6.1 mN/m; S, 13.2 +/- 3.9; control, 20.9 +/- 8.5), and decreased NF-[kappa]B activation in lung tissue. CONCLUSION: Supplementation of exogenous surfactant with a NF-[kappa]B inhibitor to create a "fortified" surfactant improves gas exchange, lung function, and pulmonary edema during 24 hrs of mechanical ventilation, without a secondary functional relapse. Inhibition of NF-[kappa]B suppressed acid sphingomyelinase activity and ceramide generation, indicating a novel proinflammatory link of NF-[kappa]B.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , NF-kappa B/antagonistas & inibidores , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Tensoativos/uso terapêutico , Animais , Animais Recém-Nascidos , Humanos , Recém-Nascido , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...