Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(3): e53135, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942054

RESUMO

Alternative splicing is a potent modifier of protein function. Stromal interaction molecule 1 (Stim1) is the essential activator of store-operated Ca2+ entry (SOCE) triggering activation of transcription factors. Here, we characterize Stim1A, a splice variant with an additional 31 amino acid domain inserted in frame within its cytosolic domain. Prominent expression of exon A is found in astrocytes, heart, kidney, and testes. Full-length Stim1A functions as a dominant-negative regulator of SOCE and ICRAC, facilitating sequence-specific fast calcium-dependent inactivation and destabilizing gating of Orai channels. Downregulation or absence of native Stim1A results in increased SOCE. Despite reducing SOCE, Stim1A leads to increased NFAT translocation. Differential proteomics revealed an interference of Stim1A with the cAMP-SOCE crosstalk by altered modulation of phosphodiesterase 8 (PDE8), resulting in reduced cAMP degradation and increased PIP5K activity, facilitating NFAT activation. Our study uncovers a hitherto unknown mechanism regulating NFAT activation and indicates that cell-type-specific splicing of Stim1 is a potent means to regulate the NFAT signalosome and cAMP-SOCE crosstalk.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína ORAI1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
2.
Pain ; 163(9): 1763-1776, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34924555

RESUMO

ABSTRACT: We deployed an online pain sensitivity questionnaire (PSQ) and an at-home version of the cold pressor test (CPT) in a large genotyped cohort. We performed genome-wide association studies on the PSQ score (25,321 participants) and CPT duration (6853). We identified one new genome-wide significant locus associated with the PSQ score, which was located in the TSSC1 (also known as EIPR1 ) gene (rs58194899, OR = 0.950 [0.933-0.967], P -value = 1.9 × 10 -8 ). Although high pain sensitivity measured by both PSQ and CPT was associated with individual history of chronic and acute pains, genetic correlation analyses surprisingly suggested an opposite direction: PSQ score was inversely genetically correlated with neck and shoulder pain ( rg = -0.71), rheumatoid arthritis (-0.68), and osteoarthritis (-0.38), and with known risk factors, such as the length of working week (-0.65), smoking (-0.36), or extreme BMI (-0.23). Gene-based analysis followed by pathway analysis showed that genome-wide association studies results were enriched for genes expressed in the brain and involved in neuronal development and glutamatergic synapse signaling pathways. Finally, we confirmed that females with red hair were more sensitive to pain and found that genetic variation in the MC1R gene was associated with an increase in self-perceived pain sensitivity as assessed by the PSQ.


Assuntos
Estudo de Associação Genômica Ampla , Limiar da Dor , Feminino , Humanos , Dor , Medição da Dor/métodos , Limiar da Dor/fisiologia , Inquéritos e Questionários
3.
PLoS One ; 15(4): e0231697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298348

RESUMO

To determine the feasibility of complex home-based phenotyping, 1,876 research participants from the customer base of 23andMe completed an online version of a Pain Sensitivity Questionnaire (PSQ) as well as a cold pressor test (CPT) which is used in clinical assessments of pain. Overall our online version of the PSQ performed similarly to the original pen-and-paper version. Construct validity of the PSQ total was demonstrated by internal consistency and consistent discrimination between more and less painful items. Criterion validity was demonstrated by correlation with pain sensitivity as measured by the CPT. Within the same cohort we performed a cold pressor test using a layperson description and household equipment. Comparison with published reports from controlled studies revealed similar distributions of cold pain tolerance times (i.e., time elapsed before removing the hand from the water). Of those who elected to participate in the CPT, a large majority of participants did not report issues with the test procedure or noncompliance with the instructions (97%). We confirmed a large sex difference in CPT thresholds in line with published data, such that women removed their hands from the water at a median of 54.2 seconds, with men lasting for a median time of 82.7 seconds (Kruskal-Wallis statistic, p < 0.0001), but other factors like age or current pain treatment were at most weakly associated, and inconsistently between men and women. We introduce a new paradigm for performing pain testing, called testing@home, that, in the case of cold nociception, showed comparable results to studies conducted under controlled conditions and supervision of a health care professional.


Assuntos
Medição da Dor/métodos , Limiar da Dor , Adulto , Idoso , Temperatura Baixa/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/etiologia , Caracteres Sexuais , Fatores Sexuais , Inquéritos e Questionários , Adulto Jovem
4.
Neuropharmacology ; 158: 107749, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461640

RESUMO

The homotrimeric P2X3 receptor, one of the seven members of the ATP-gated P2X receptor family, plays a crucial role in sensory neurotransmission. P2X3 receptor antagonists have been identified as promising drugs to treat chronic cough and are suggested to offer pain relief in chronic pain such as neuropathic pain. Here, we analysed whether compounds affect P2X3 receptor activity by high-throughput screening of the Spectrum Collection of 2000 approved drugs, natural products and bioactive substances. We identified aurintricarboxylic acid (ATA) as a nanomolar-potency antagonist of P2X3 receptor-mediated responses. Two-electrode voltage clamp electrophysiology-based concentration-response analysis and selectivity profiling revealed that ATA strongly inhibits the rP2X1 and rP2X3 receptors (with IC50 values of 8.6 nM and 72.9 nM, respectively) and more weakly inhibits P2X2/3, P2X2, P2X4 or P2X7 receptors (IC50 values of 0.76 µM, 22 µM, 763 µM or 118 µM, respectively). Patch-clamp analysis of mouse DRG neurons revealed that ATA inhibited native P2X3 and P2X2/3 receptors to a similar extent than rat P2X3 and P2X2/3 receptors expressed in Xenopus oocytes. In a radioligand binding assay, up to 30 µM ATA did not compete with [3H]-ATP for rP2X3 receptor binding, indicating a non-competitive mechanism of action. Molecular docking studies, site-directed mutagenesis and concentration-response analysis revealed that ATA binds to the negative allosteric site of the hP2X3 receptor. In summary, ATA as a drug-like pharmacological tool compound is a nanomolar-potency, allosteric antagonist with selectivity towards αß-methylene-ATP-sensitive P2X1 and P2X3 receptors.


Assuntos
Ácido Aurintricarboxílico/farmacologia , Neurônios/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X1/efeitos dos fármacos , Receptores Purinérgicos P2X3/efeitos dos fármacos , Regulação Alostérica , Sítio Alostérico , Animais , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Simulação de Acoplamento Molecular , Neurônios/metabolismo , Oócitos , Técnicas de Patch-Clamp , Ratos , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Xenopus laevis
5.
Biochem Soc Trans ; 47(3): 909-918, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31085614

RESUMO

Medical research has identified over 500 brain disorders. Among these, there are still only very few neuropathologies whose causes are fully understood and, consequently, very few drugs whose mechanism of action is known. No FDA drug has been identified for major neurodegenerative diseases, such as Alzheimer's and Parkinson's. We still lack effective treatments and strategies for modulating progression or even early neurodegenerative disease onset diagnostic tools. A great support toward the highly needed identification of neuroactive drugs comes from computer simulation methods and, in particular, from molecular dynamics (MD). This provides insight into structure-function relationship of a target and predicts structure, dynamics and energetics of ligand/target complexes under biologically relevant conditions like temperature and physiological saline concentration. Here, we present examples of the predictive power of MD for neuroactive ligands/target complexes. This brief survey from our own research shows the usefulness of partnerships between academia and industry, and from joint efforts between experimental and theoretical groups.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Descoberta de Drogas , Humanos , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 19(9)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200318

RESUMO

Positron emission tomography (PET) radioligands targeting the human translocator membrane protein (TSPO) are broadly used for the investigations of neuroinflammatory conditions associated with neurological disorders. Structural information on the mammalian protein homodimers-the suggested functional state of the protein-is limited to a solid-state nuclear magnetic resonance (NMR) study and to a model based on the previously-deposited solution NMR structure of the monomeric mouse protein. Computational studies performed here suggest that the NMR-solved structure in the presence of detergents is not prone to dimer formation and is furthermore unstable in its native membrane environment. We, therefore, propose a new model of the functionally-relevant dimeric form of the mouse protein, based on a prokaryotic homologue. The model, fully consistent with solid-state NMR data, is very different from the previous predictions. Hence, it provides, for the first time, structural insights into this pharmaceutically-important target which are fully consistent with experimental data.


Assuntos
Simulação de Acoplamento Molecular , Multimerização Proteica , Receptores de GABA/química , Animais , Sítios de Ligação , Colesterol/química , Colesterol/metabolismo , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Receptores de GABA/metabolismo
7.
Mol Pharm ; 14(12): 4362-4373, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29099189

RESUMO

Drug induced phospholipidosis (PLD) may be observed in the preclinical phase of drug development and pose strategic questions. As lysosomes have a central role in pathogenesis of PLD, assessment of lysosomal concentrations is important for understanding the pharmacokinetic basis of PLD manifestation and forecast of potential clinical appearance. Herein we present a systematic approach to provide insight into tissue-specific PLD by evaluation of unbound intracellular and lysosomal (reflecting acidic organelles) concentrations of two structurally related diprotic amines, GRT1 and GRT2. Their intratissue distribution was assessed using brain and lung slice assays. GRT1 induced PLD both in vitro and in vivo. GRT1 showed a high intracellular accumulation that was more pronounced in the lung, but did not cause cerebral PLD due to its effective efflux at the blood-brain barrier. Compared to GRT1, GRT2 revealed higher interstitial fluid concentrations in lung and brain, but more than 30-fold lower lysosomal trapping capacity. No signs of PLD were seen with GRT2. The different profile of GRT2 relative to GRT1 is due to a structural change resulting in a reduced basicity of one amino group. Hence, by distinct chemical modifications, undesired lysosomal trapping can be separated from desired drug delivery into different organs. In summary, assessment of intracellular unbound concentrations was instrumental in delineating the intercompound and intertissue differences in PLD induction in vivo and could be applied for identification of potential lysosomotropic compounds in drug development.


Assuntos
Diaminas/farmacologia , Lipidoses/induzido quimicamente , Modelos Biológicos , Animais , Encéfalo/metabolismo , Química Farmacêutica , Líquido Extracelular/metabolismo , Feminino , Células Hep G2 , Humanos , Pulmão/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Modelos Animais , Modelos Químicos , Fosfolipídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Distribuição Tecidual
8.
Sci Rep ; 8: 45761, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368046

RESUMO

G-protein coupled receptors (GPCRs) are the largest and most pharmaceutically relevant family of membrane proteins. Here, fully unbiased, enhanced sampling simulations of a constitutively active mutant (CAM) of a class A GPCR, the µ-opioid receptor (µOR), demonstrates repeated transitions between the inactive (IS) and active-like (AS-L) states. The interconversion features typical activation/inactivation patterns involving established conformational rearrangements of conserved residues. By contrast, wild-type µOR remains in IS during the same course of simulation, consistent with the low basal activity of the protein. The simulations point to an important role of residue W2936.48 at the "toggle switch" in the mutation-induced constitutive activation. Such role has been already observed for other CAMs of class A GPCRs. We also find a significantly populated intermediate state, rather similar to IS. Based on the remarkable accord between simulations and experiments, we suggest here that this state, which has escaped so far experimental characterization, might constitute an early step in the activation process of the apo µOR CAM.


Assuntos
Apoproteínas/química , Mutação , Receptores Opioides mu/química , Humanos , Modelos Moleculares , Conformação Proteica , Receptores Opioides mu/genética
9.
Proc Natl Acad Sci U S A ; 114(11): E2156-E2165, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28235784

RESUMO

The P2X7 receptor (P2X7R) belongs to the P2X family of ATP-gated cation channels. P2X7Rs are expressed in epithelial cells, leukocytes, and microglia, and they play important roles in immunological and inflammatory processes. P2X7Rs are obligate homotrimers, with each subunit having two transmembrane helices, TM1 and TM2. Structural and functional data regarding the P2X2 and P2X4 receptors indicate that the central trihelical TM2 bundle forms the intrinsic transmembrane channel of P2X receptors. Here, we studied the accessibility of single cysteines substituted along the pre-TM2 and TM2 helix (residues 327-357) of the P2X7R using as readouts (i) the covalent maleimide fluorescence accessibility of the surface-bound P2X7R and (ii) covalent modulation of macroscopic and single-channel currents using extracellularly and intracellularly applied methanethiosulfonate (MTS) reagents. We found that the channel opening extends from the pre-TM2 region through the outer half of the trihelical TM2 channel. Covalently adducted MTS ethylammonium+ (MTSEA+) strongly increased the probability that the channel was open by delaying channel closing of seven of eight responsive human P2X7R (hP2X7R) mutants. Structural modeling, as supported by experimental probing, suggested that resulting intraluminal hydrogen bonding interactions stabilize the open-channel state. The additional decrease in single-channel conductance by MTSEA+ in five of seven positions identified Y336, S339, L341C, Y343, and G345 as the narrowest part of the channel lumen. The gate and ion-selectivity filter of the P2X7R could be colocalized at and around residue S342. None of our results provided any evidence for dilation of the hP2X7R channel on sustained stimulation with ATP4.


Assuntos
Ativação do Canal Iônico , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Carbocianinas/química , Cisteína/química , Cisteína/genética , Ligação de Hidrogênio , Ativação do Canal Iônico/genética , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética , Relação Estrutura-Atividade
10.
Sci Rep ; 6: 33347, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27624281

RESUMO

Store-operated Ca(2+) entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca(2+) selective Orai1 with the oxidant H2O2 reduces ICRAC with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.


Assuntos
Proteína ORAI1/metabolismo , Compostos de Sulfidrila/metabolismo , Células HEK293 , Humanos , Mesilatos/metabolismo , Mutação/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/antagonistas & inibidores , Oxirredução , Ligação Proteica , Subunidades Proteicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Molécula 1 de Interação Estromal/metabolismo
11.
PLoS One ; 10(8): e0135998, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26280453

RESUMO

Atomistic descriptions of the µ-opioid receptor (µOR) noncovalently binding with two of its prototypical morphinan agonists, morphine (MOP) and hydromorphone (HMP), are investigated using molecular dynamics (MD) simulations. Subtle differences between the binding modes and hydration properties of MOP and HMP emerge from the calculations. Alchemical free energy perturbation calculations show qualitative agreement with in vitro experiments performed in this work: indeed, the binding free energy difference between MOP and HMP computed by forward and backward alchemical transformation is 1.2±1.1 and 0.8±0.8 kcal/mol, respectively, to be compared with 0.4±0.3 kcal/mol from experiment. Comparison with an MD simulation of µOR covalently bound with the antagonist ß-funaltrexamine hints to agonist-induced conformational changes associated with an early event of the receptor's activation: a shift of the transmembrane helix 6 relative to the transmembrane helix 3 and a consequent loss of the key R165-T279 interhelical hydrogen bond. This finding is consistent with a previous proposal suggesting that the R165-T279 hydrogen bond between these two helices indicates an inactive receptor conformation.


Assuntos
Hidromorfona/metabolismo , Receptores Opioides mu/metabolismo , Arrestinas/metabolismo , AMP Cíclico/metabolismo , Modelos Teóricos , Simulação de Dinâmica Molecular , Morfina/metabolismo , Ligação Proteica , Termodinâmica
12.
Curr Med Chem ; 22(7): 799-818, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25439586

RESUMO

P2X receptors constitute a seven-member family (P2X1-7) of extracellular ATP-gated cation channels of widespread expression. Because P2X receptors have been implicated in neurological, inflammatory and cardiovascular diseases, they constitute promising drug targets. Since the first P2X cDNA sequences became available in 1994, numerous site-directed mutagenesis studies have been conducted to disclose key sites of P2X receptor function and oligomerization. The publication of the 3-A crystal structures of the zebrafish P2X4 (zfP2X4) receptor in the homotrimeric apo-closed and ATP-bound open states in 2009 and 2012, respectively, has ushered a new era by allowing for the interpretation of the wealth of molecular data in terms of specific three-dimensional models and by paving the way for designing more-decisive experiments. Thanks to these structures, the last five years have provided invaluable insight into our understanding of the structure and function of the P2X receptor class of ligandgated ion channels. In this review, we provide an overview of mutagenesis studies of the pre- and post-crystal structure eras that identified amino acid residues of key importance for ligand binding, channel gating, ion flow, formation of the pore and the channel gate, and desensitization. In addition, the sites that are involved in the trimerization of P2X receptors are reviewed based on mutagenesis studies and interface contacts that were predicted by the zfP2X4 crystal structures.


Assuntos
Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/metabolismo , Animais , Sítios de Ligação , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Peixe-Zebra
13.
ACS Med Chem Lett ; 5(8): 851-6, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25147602

RESUMO

We report the discovery of spiro[cyclohexane-pyrano[3,4-b]indole]-amines, as functional nociceptin/orphanin FQ peptide (NOP) and opioid receptor agonists with strong efficacy in preclinical models of acute and neuropathic pain. Utilizing 4-(dimethylamino)-4-phenylcyclo-hexanone 1 and tryptophol in an oxa-Pictet-Spengler reaction led to the formation of spiroether 2, representing a novel NOP and opioid peptide receptor agonistic chemotype. This finding initially stems from the systematic derivatization of 1, which resulted in alcohols 3-5, ethers 6 and 7, amines 8-10, 22-24, and 26-28, amides 11 and 25, and urea 12, many with low nanomolar binding affinities at the NOP and mu opioid peptide (MOP) receptors.

14.
ACS Med Chem Lett ; 5(8): 857-62, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25147603

RESUMO

In a previous communication, our efforts leading from 1 to the identification of spiro[cyclohexane-dihydropyrano[3,4-b]indole]-amine 2a as analgesic NOP and opioid receptor agonist were disclosed and their favorable in vitro and in vivo pharmacological properties revealed. We herein report our efforts to further optimize lead 2a, toward trans-6'-fluoro-4',9'-dihydro-N,N-dimethyl-4-phenyl-spiro[cyclohexane-1,1'(3'H)-pyrano[3,4-b]indol]-4-amine (cebranopadol, 3a), which is currently in clinical development for the treatment of severe chronic nociceptive and neuropathic pain.

15.
Mol Pharmacol ; 83(1): 73-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23041661

RESUMO

P2X receptors are trimeric adenosine-5'-triphosphate (ATP)-gated cation channels involved in fast signal transduction in many cell types. In this study, we used homology modeling of the rat P2X2 receptor with the zebrafish P2X4 X-ray template to determine that the side chains of the Glu167 and Arg290 residues are in close spatial vicinity within the ATP-binding pocket when the rat P2X2 channel is closed. Through charge reversal mutation analysis and mutant cycle analysis, we obtained evidence that Glu167 and Arg290 form an electrostatic interaction. In addition, disulfide trapping indicated the close proximity of Glu167 and Arg290 when the channel is in the closed state, but not in the ATP-bound open state. Consistent with a gating-induced movement that disrupts the Glu167/Arg290 salt bridge, a comparison of the closed and open rat P2X2 receptor models revealed a significant rearrangement of the protein backbone and the side chains of the Glu167 and Arg290 residues during the closed-to-open transition. The associated release of the Glu167/Arg290 salt bridge during channel opening allows a strong ionic interaction between Arg290 and a γ-phosphate oxygen of ATP. We conclude from these results that the state-dependent salt bridge switching from Arg290/Glu167 to Arg290/ATP fulfills a dual role: to destabilize the closed state of the receptor and to promote the ionic coordination of ATP in the ATP-binding pocket.


Assuntos
Trifosfato de Adenosina/química , Arginina/química , Ácido Glutâmico/química , Receptores Purinérgicos P2X2/química , Trifosfato de Adenosina/farmacologia , Animais , Sítios de Ligação , Feminino , Ativação do Canal Iônico , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oócitos/fisiologia , Técnicas de Patch-Clamp , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X4/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eletricidade Estática , Xenopus laevis
16.
Front Cell Neurosci ; 7: 250, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24391538

RESUMO

Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs.

17.
ChemMedChem ; 7(10): 1712-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22945552

RESUMO

Blockade of voltage-gated sodium channels (VGSCs) has been used successfully in the clinic to enable control of pathological firing patterns that occur in conditions as diverse as chronic pain, epilepsy, and arrhythmias. Herein we review the state of the art in marketed sodium channel inhibitors, including a brief compendium of their binding sites and of the cellular and molecular biology of sodium channels. Despite the preferential action of this drug class toward over-excited cells, which significantly limits potential undesired side effects on other cells, the need to develop a second generation of sodium channel inhibitors to overcome their critical clinical shortcomings is apparent. Current approaches in drug discovery to deliver novel and truly innovative sodium channel inhibitors is next presented by surveying the most recent medicinal chemistry breakthroughs in the field of small molecules and developments in automated patch-clamp platforms. Various strategies aimed at identifying small molecules that target either particular isoforms of sodium channels involved in specific diseases or anomalous sodium channel currents, irrespective of the isoform by which they have been generated, are critically discussed and revised.


Assuntos
Bloqueadores dos Canais de Sódio/química , Canais de Sódio Disparados por Voltagem/química , Sítios de Ligação , Descoberta de Drogas , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
18.
Mol Pharmacol ; 79(4): 649-61, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21191044

RESUMO

P2X2 receptors are members of the ATP-gated P2X family of cation channels, and they participate in neurotransmission in sympathetic ganglia and interneurons. Here, we identified 7,7'-(carbonylbis(imino-3,1-phenylenecarbonylimino-3,1-(4-methyl-phenylene)carbonylimino))bis(1-methoxy-naphthalene-3,6-disulfonic acid) tetrasodium salt (NF770) as a nanomolar-potent competitive P2X2 receptor antagonist within a series of 139 suramin derivatives. Three structural determinants contributed to the inhibition of P2X2 receptors by NF770: 1) a "large urea" structure with two symmetric phenylenecarbonylimino groups; 2) attachment of the naphthalene moiety in position 7,7'; and 3) the specific position of two sulfonic acid groups (3,3'; 6,6') and of one methoxy group (1,1') at the naphthalene moiety. This structure-activity relationship was interpreted using a rat P2X2 homology model based on the crystal structure of the closed zebrafish P2X4 receptor. Docking of the suramin derivatives into the modeled ATP-binding pocket provides a uniform explanation for the observed differences in inhibitory potencies. Changes in the chemical structure that increase the inhibitory potency of the suramin derivatives improved the spatial orientation within the ATP-binding pocket to allow for stronger polar interactions of functional groups with Gly72, Glu167, or Arg290. Gly72 is responsible for the orientation of the methoxy group close to Arg290 or Glu167. Combined mutational and functional analysis confirmed that residues Gly72 and Glu167 are as important for ATP binding as Arg290, the ATP-binding role of which has been shown in previous studies. The in silico prediction of Gly72 and Glu167 as ATP-binding residues strongly supports the validity of our homology docking.


Assuntos
Antagonistas do Receptor Purinérgico P2/metabolismo , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X2/metabolismo , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Feminino , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glicina/genética , Glicina/metabolismo , Ligantes , Mutagênese Sítio-Dirigida , Valor Preditivo dos Testes , Ligação Proteica/genética , Ratos , Receptores Purinérgicos P2X2/fisiologia , Homologia de Sequência de Aminoácidos , Suramina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...