Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 26(4): 686-701, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28040732

RESUMO

The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeleton-regulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Mutação de Sentido Incorreto , Profilinas/biossíntese , Medula Espinal/metabolismo , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Profilinas/genética , Medula Espinal/patologia
2.
Ann Clin Transl Neurol ; 3(5): 331-45, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27231703

RESUMO

OBJECTIVE: The aim of this study was to investigate the role of ubiquitin C-terminal hydrolase-L1 (UCHL1) for motor neuron circuitry and especially in spinal motor neuron (SMN) health, function, and connectivity. METHODS: Since mutations in UCHL1 gene leads to motor dysfunction in patients, we investigated the role of UCHL1 on SMN survival, axon health, and connectivity with the muscle, by employing molecular and cellular marker expression analysis and electrophysiological recordings, in healthy wild-type and Uchl1 (nm3419) (UCHL1-/-) mice, which lack all UCHL1 function. RESULTS: There is pure motor neuropathy with selective degeneration of the motor, but not sensory axons in the absence of UCHL1 function. Neuromuscular junctions (NMJ) are impaired in muscle groups that are innervated by slow-twitch or fast-twitch SMN. However, unlike corticospinal motor neurons, SMN cell bodies remain intact with no signs of elevated endoplasmic reticulum (ER) stress. INTERPRETATION: Presence of NMJ defects and progressive retrograde axonal degeneration in the absence of major SMN soma loss suggest that defining pathology as a function of neuron number is misleading and that upper and lower motor neurons utilize UCHL1 function in different cellular events. In line with findings in patients with mutations in UCHL1 gene, our results suggest a unique role of UCHL1, especially for motor neuron circuitry. SMN require UCHL1 to maintain NMJ and motor axon health, and that observed motor dysfunction in the absence of UCHL1 is not due to SMN loss, but mostly due to disintegrated circuitry.

3.
Front Neuroanat ; 8: 16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24723858

RESUMO

Corticospinal motor neurons (CSMN) have a unique ability to receive, integrate, translate, and transmit the cerebral cortex's input toward spinal cord targets and therefore act as a "spokesperson" for the initiation and modulation of voluntary movements that require cortical input. CSMN degeneration has an immense impact on motor neuron circuitry and is one of the underlying causes of numerous neurodegenerative diseases, such as primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS). In addition, CSMN death results in long-term paralysis in spinal cord injury patients. Detailed cellular analyses are crucial to gain a better understanding of the pathologies underlying CSMN degeneration. However, visualizing and identifying these vulnerable neuron populations in the complex and heterogeneous environment of the cerebral cortex have proved challenging. Here, we will review recent developments and current applications of novel strategies that reveal the cellular and molecular basis of CSMN health and vulnerability. Such studies hold promise for building long-term effective treatment solutions in the near future.

4.
J Cell Biol ; 199(4): 699-711, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23128240

RESUMO

Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail-tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.


Assuntos
Desmogleína 2/química , Desmogleína 2/metabolismo , Adesão Celular , Desmogleína 2/genética , Humanos , Mutação , Propriedades de Superfície , Células Tumorais Cultivadas
5.
Mol Biol Cell ; 21(16): 2844-59, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20554761

RESUMO

Plakophilin 2 (PKP2), an armadillo family member closely related to p120 catenin (p120ctn), is a constituent of the intercellular adhesive junction, the desmosome. We previously showed that PKP2 loss prevents the incorporation of desmosome precursors enriched in the plaque protein desmoplakin (DP) into newly forming desmosomes, in part by disrupting PKC-dependent regulation of DP assembly competence. On the basis of the observation that DP incorporation into junctions is cytochalasin D-sensitive, here we ask whether PKP2 may also contribute to actin-dependent regulation of desmosome assembly. We demonstrate that PKP2 knockdown impairs cortical actin remodeling after cadherin ligation, without affecting p120ctn expression or localization. Our data suggest that these defects result from the failure of activated RhoA to localize at intercellular interfaces after cell-cell contact and an elevation of cellular RhoA, stress fibers, and other indicators of contractile signaling in squamous cell lines and atrial cardiomyocytes. Consistent with these observations, RhoA activation accelerated DP redistribution to desmosomes during the first hour of junction assembly, whereas sustained RhoA activity compromised desmosome plaque maturation. Together with our previous findings, these data suggest that PKP2 may functionally link RhoA- and PKC-dependent pathways to drive actin reorganization and regulate DP-IF interactions required for normal desmosome assembly.


Assuntos
Actomiosina/metabolismo , Desmossomos/metabolismo , Placofilinas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Caderinas/metabolismo , Cateninas/metabolismo , Comunicação Celular , Linhagem Celular , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Junções Intercelulares/metabolismo , Microscopia de Fluorescência , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/metabolismo , Placofilinas/genética , Ligação Proteica , Proteína Quinase C/metabolismo , Interferência de RNA , Transdução de Sinais , delta Catenina
6.
Mol Biol Cell ; 20(1): 328-37, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987342

RESUMO

Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cell-cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically.


Assuntos
Proteínas ADAM/metabolismo , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Endocitose/fisiologia , Receptores ErbB/metabolismo , Isoenzimas/metabolismo , Proteínas ADAM/genética , Animais , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Desmogleína 2/genética , Receptores ErbB/genética , Humanos , Junções Intercelulares/metabolismo , Isoenzimas/genética , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...