Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 12(1): 362, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345265

RESUMO

BACKGROUND: Rhipicephalus microplus is a hard tick species that has a high impact on cattle health and production in tropical and subtropical regions. Recently, ribosomal DNA and morphological analysis resulted in the reinstatement of R. australis as a separate species from R. microplus. Both feed on cattle and can transmit bovine pathogens such as Anaplasma and Babesia species. The current treatment with acaricides is becoming increasingly less effective due to the emergence of resistant tick strains. A promising alternative can be found in the form of anti-tick vaccines. The available commercial vaccines can be used to control tick infestation, but the lack of a knockdown effect (> 90% reduction in tick numbers as seen with effective acaricides) hampers its widespread use, hence higher efficacious vaccines are needed. Instead of searching for new protective antigens, we investigated the efficacy of vaccines that contain more than one (partially) protective antigen. For screening vaccine formulations, a previously developed in vitro feeding assay was used in which R. australis larvae are fed sera that were raised against the candidate vaccine antigens. In the present study, the efficacy of the Bm86 midgut antigen and the cytosolic Subolesin (SUB) antigen were evaluated in vitro. RESULTS: Antiserum against recombinant Bm86 (rBm86) partially inhibited larval engorgement, whereas antiserum against recombinant SUB (rSUB) did not have any effect on feeding of larvae. Importantly, when larvae were fed a combination of antiserum against rBm86 and rSUB, a synergistic effect on significantly reducing larval infestations was found. Immunohistochemical analysis revealed that the rBm86 antiserum reacted with gut epithelium of R. australis larvae, whereas the antiserum against rSUB stained salivary glands and rectal sac epithelium. CONCLUSIONS: Combining anti-Bm86 and anti-subolesin antibodies synergistically reduced R. australis larval feeding in vitro. Rhipicephalus australis is a one host tick, meaning that the larvae develop to nymphs and subsequently adults on the same host. Hence, this protective effect could be even more pronounced when larvae are used for infestation of vaccinated cattle, as the antibodies could then affect all three developmental stages. This will be tested in future in vivo experiments.


Assuntos
Anticorpos/farmacologia , Antígenos/imunologia , Proteínas de Artrópodes/imunologia , Soros Imunes/farmacologia , Glicoproteínas de Membrana/imunologia , Rhipicephalus/efeitos dos fármacos , Animais , Antígenos/genética , Proteínas de Artrópodes/genética , Bovinos , Feminino , Larva/efeitos dos fármacos , Larva/fisiologia , Glicoproteínas de Membrana/genética , Proteínas Recombinantes/imunologia , Rhipicephalus/fisiologia , Vacinas/imunologia
2.
Parasit Vectors ; 10(1): 153, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335800

RESUMO

BACKGROUND: Rhipicephalus microplus is a hard tick that has a major impact on cattle health in tropical and subtropical regions because it feeds on cattle and is implicated in the transmission of pathogens that cause diseases such as bovine anaplasmosis and babesiosis. Presently, acaricides are used to control tick infestation but this is becoming increasingly less effective due to the emergence of tick strains that are resistant to one or more classes of acaricides. Anti-tick vaccines are a promising alternative to control tick infestation in cattle. The life-cycle and host preference of R. microplus, however, makes vaccine research in cattle costly and would therefore greatly benefit from an in vitro screening system. METHODS: To this aim, a stacked 24-well in vitro feeding system was designed in which the blood meal was administered in a chamber on top of the compartment containing the ticks, exploiting their anti-gravitational tendency. Both compartments were separated by a special feeding membrane, which was made by applying a silicone mixture to a gold beater's skin (baudruche membrane) with a paint roller to create a slightly uneven surface of 17-40 µm variable thickness. To further stimulate feeding, the membrane was treated with bovine hair extract and the unit was placed at 37 °C with 90% RH and 5% CO2. RESULTS: Using this set-up with Rhipicephalus australis (formerly Rhipicephalus microplus), a larval engorgement rate of up to 71% could be achieved. The larvae could successfully feed on blood, but also on serum. The latter allows easy screening of the effect of sera that are raised against tick proteins on feeding. As an example, serum from cattle that were vaccinated with the Bm86 midgut protein of R. microplus significantly reduced larval engorgement rates by 42%. CONCLUSION: The in vitro feeding system's high throughput design and its ability to measure statistically significant anti-tick effects in sera from immunized cattle enables screening of multiple vaccine candidates in a cost-effective manner.


Assuntos
Entomologia/métodos , Métodos de Alimentação , Rhipicephalus/crescimento & desenvolvimento , Ração Animal , Animais , Larva/crescimento & desenvolvimento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...