Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(4): e0194728, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621273

RESUMO

Viral vectors are extensively purified for use in biomedical research, in order to separate biologically active virus particles and to eliminate production related impurities that are assumed to be detrimental to the host. For recombinant adeno-associated virus (rAAV) vectors this is typically accomplished using density gradient-based methods, which are tedious and require specialized ultracentrifugation equipment. In order to streamline the preparation of rAAV vectors for pilot and small animal studies, we recently devised a simple ultrafiltration approach that permits rapid virus concentration and partial removal of production-related impurities. Here we show that systemic administration of such rapidly prepared (RP) rAAV8 vectors in mice is safe and efficiently transduces the liver. Across a range of doses, delivery of RP rAAV8-CMV-eGFP vector induced enhanced green fluorescent protein (eGFP) expression in liver that was comparable to that obtained from a conventional iodixanol gradient-purified (IP) vector. Surprisingly, no liver inflammation or systemic cytokine induction was detected in RP rAAV injected animals, revealing that residual impurities in the viral vector preparation are not deleterious to the host. Together, these data demonstrate that partially purified rAAV vector can be safely and effectively administered in vivo. The speed and versatility of the RP method and lack of need for cumbersome density gradients or expensive ultracentrifuge equipment will enable more widespread use of RP prepared rAAV vectors, such as for pilot liver gene transfer studies.


Assuntos
Dependovirus/isolamento & purificação , Vetores Genéticos/administração & dosagem , Vetores Genéticos/isolamento & purificação , Fígado , Transdução Genética , Ultrafiltração , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , Linhagem Celular , Dependovirus/genética , Dependovirus/imunologia , Expressão Gênica , Técnicas de Transferência de Genes , Genes Reporter , Terapia Genética , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Modelos Animais , Transgenes , Ultracentrifugação , Ultrafiltração/métodos , Carga Viral , Replicação Viral
2.
Biochemistry ; 57(9): 1552-1559, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29388418

RESUMO

Hereditary hemochromatosis (HH), a disease marked by chronic iron overload from insufficient expression of the hormone hepcidin, is one of the most common genetic diseases. One form of HH (type III) results from mutations in transferrin receptor-2 (TfR2). TfR2 is postulated to be a part of signaling system that is capable of modulating hepcidin expression. However, the molecular details of TfR2's role in this system remain unclear. TfR2 is predicted to bind the iron carrier transferrin (Tf) when the iron saturation of Tf is high. To better understand the nature of these TfR-Tf interactions, a binding study with the full-length receptors was conducted. In agreement with previous studies with truncated forms of these receptors, holo-Tf binds to the TfR1 homologue significantly stronger than to TfR2. However, the binding constant for Tf-TfR2 is still far above that of physiological holo-Tf levels, inconsistent with the hypothetical model, suggesting that other factors mediate the interaction. One possible factor, apo-Tf, only weakly binds TfR2 at serum pH and thus will not be able to effectively compete with holo-Tf. Tf binding to a TfR2 chimera containing the TfR1 helical domain indicates that the differences in the helical domain account for differences in the on rate of Tf, and nonconserved inter-receptor interactions are necessary for the stabilization of the complex. Conserved residues at one possible site of stabilization, the apical arm junction, are not important for TfR1-Tf binding but are critical for the TfR2-Tf interaction. Our results highlight the differences in Tf interactions with the two TfRs.


Assuntos
Antígenos CD/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Antígenos CD/química , Endossomos/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Cinética , Fígado/metabolismo , Modelos Biológicos , Domínios Proteicos , Receptores da Transferrina/química , Transferrina/química
3.
J Biol Chem ; 292(44): 18354-18371, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28924039

RESUMO

Systemic iron homeostasis is maintained by regulation of iron absorption in the duodenum, iron recycling from erythrocytes, and iron mobilization from the liver and is controlled by the hepatic hormone hepcidin. Hepcidin expression is induced via the bone morphogenetic protein (BMP) signaling pathway that preferentially uses two type I (ALK2 and ALK3) and two type II (ActRIIA and BMPR2) BMP receptors. Hemojuvelin (HJV), HFE, and transferrin receptor-2 (TfR2) facilitate this process presumably by forming a plasma membrane complex with BMP receptors. Matriptase-2 (MT2) is a protease and key suppressor of hepatic hepcidin expression and cleaves HJV. Previous studies have therefore suggested that MT2 exerts its inhibitory effect by inactivating HJV. Here, we report that MT2 suppresses hepcidin expression independently of HJV. In Hjv-/- mice, increased expression of exogenous MT2 in the liver significantly reduced hepcidin expression similarly as observed in wild-type mice. Exogenous MT2 could fully correct abnormally high hepcidin expression and iron deficiency in MT2-/- mice. In contrast to MT2, increased Hjv expression caused no significant changes in wild-type mice, suggesting that Hjv is not a limiting factor for hepcidin expression. Further studies revealed that MT2 cleaves ALK2, ALK3, ActRIIA, Bmpr2, Hfe, and, to a lesser extent, Hjv and Tfr2. MT2-mediated Tfr2 cleavage was also observed in HepG2 cells endogenously expressing MT2 and TfR2. Moreover, iron-loaded transferrin blocked MT2-mediated Tfr2 cleavage, providing further insights into the mechanism of Tfr2's regulation by transferrin. Together, these observations indicate that MT2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Animais , Feminino , Proteínas Ligadas por GPI , Técnicas de Transferência de Genes , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Células Hep G2 , Hepatócitos/enzimologia , Hepcidinas/agonistas , Hepcidinas/antagonistas & inibidores , Hepcidinas/genética , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Knockout , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Especificidade por Substrato
5.
J Biol Chem ; 290(37): 22558-69, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26205815

RESUMO

Six-transmembrane epithelial antigen of the prostate 3 (Steap3) is the major ferric reductase in developing erythrocytes. Steap family proteins are defined by a shared transmembrane domain that in Steap3 has been shown to function as a transmembrane electron shuttle, moving cytoplasmic electrons derived from NADPH across the lipid bilayer to the extracellular face where they are used to reduce Fe(3+) to Fe(2+) and potentially Cu(2+) to Cu(1+). Although the cytoplasmic N-terminal oxidoreductase domain of Steap3 and Steap4 are relatively well characterized, little work has been done to characterize the transmembrane domain of any member of the Steap family. Here we identify high affinity FAD and iron biding sites and characterize a single b-type heme binding site in the Steap3 transmembrane domain. Furthermore, we show that Steap3 is functional as a homodimer and that it utilizes an intrasubunit electron transfer pathway through the single heme moiety rather than an intersubunit electron pathway through a potential domain-swapped dimer. Importantly, the sequence motifs in the transmembrane domain that are associated with the FAD and metal binding sites are not only present in Steap2 and Steap4 but also in Steap1, which lacks the N-terminal oxidoreductase domain. This strongly suggests that Steap1 harbors latent oxidoreductase activity.


Assuntos
Antígenos de Neoplasias/metabolismo , Cobre/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Heme/metabolismo , Ferro/metabolismo , NADP/metabolismo , Antígenos de Neoplasias/genética , Flavina-Adenina Dinucleotídeo/genética , Células HEK293 , Heme/genética , Humanos , NADP/genética , Multimerização Proteica/fisiologia , Estrutura Terciária de Proteína
6.
J Biol Chem ; 288(28): 20668-82, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23733181

RESUMO

Steap4 is a cell surface metalloreductase linked to obesity-associated insulin resistance. Initial characterization of its cell surface metalloreductase activity has been reported, but thorough biochemical characterization of this activity is lacking. Here, we report detailed kinetic analysis of the Steap4 cell surface metalloreductase activities. Steap4 shows physiologically relevant Km values for both Fe(3+) and Cu(2+) and retains activity at acidic pH, suggesting it may also function within intracellular organelles to reduce these metals. Flavin-dependent NADPH oxidase activity that was much greater than the equivalent Steap3 construct was observed for the isolated N-terminal oxidoreductase domain. The crystal structure of the Steap4 oxidoreductase domain was determined, providing a structural explanation for these differing activities. Structure-function work also suggested Steap4 utilizes an interdomain flavin-binding site to shuttle electrons between the oxidoreductase and transmembrane domains, and it showed that the disordered N-terminal residues do not contribute to enzymatic activity.


Assuntos
Cobre/metabolismo , Flavinas/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Endossomos/enzimologia , Endossomos/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lisossomos/enzimologia , Lisossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxirredutases/química , Oxirredutases/genética , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...