Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(4): e0038922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862794

RESUMO

Beneficial interaction of members of the fungal genus Trichoderma with plant roots primes the plant immune system, promoting systemic resistance to pathogen infection. Some strains of Trichoderma virens produce gliotoxin, a fungal epidithiodioxopiperazine (ETP)-type secondary metabolite that is toxic to animal cells. It induces apoptosis, prevents NF-κB activation via the inhibition of the proteasome, and has immunosuppressive properties. Gliotoxin is known to be involved in the antagonism of rhizosphere microorganisms. To investigate whether this metabolite has a role in the interaction of Trichoderma with plant roots, we compared gliotoxin-producing and nonproducing T. virens strains. Both colonize the root surface and outer layers, but they have differential effects on root growth and architecture. The responses of tomato plants to a pathogen challenge were followed at several levels: lesion development, levels of ethylene, and reactive oxygen species. The transcriptomic signature of the shoot tissue in response to root interaction with producing and nonproducing T. virens strains was monitored. Gliotoxin producers provided stronger protection against foliar pathogens, compared to nonproducing strains. This was reflected in the transcriptomic signature, which showed the induction of defense-related genes. Two markers of plant defense response, PR1 and Pti-5, were differentially induced in response to pure gliotoxin. Gliotoxin thus acts as a microbial signal, which the plant immune system recognizes, directly or indirectly, to promote a defense response. IMPORTANCE A single fungal metabolite induces far-reaching transcriptomic reprogramming in the plant, priming immune responses and defense, in contrast to its immunosuppressive effect on animal cells. While the negative effects of gliotoxin-producing Trichoderma strains on growth may be observed only under a particular set of laboratory conditions, gliotoxin-linked molecular patterns, including the potential for limited cell death, could strongly prime plant defense, even in mature soil-grown plants in which the same Trichoderma strain promotes growth.


Assuntos
Gliotoxina , Hypocrea , Solanum lycopersicum , Trichoderma , Animais , Hypocrea/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Raízes de Plantas/microbiologia , Trichoderma/genética , Trichoderma/metabolismo
2.
Nucleic Acids Res ; 44(W1): W568-74, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27198220

RESUMO

Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.


Assuntos
Proteínas de Ligação a DNA/química , Internet , Modelos Moleculares , Proteínas de Ligação a RNA/química , Software , Eletricidade Estática , Algoritmos , Sítios de Ligação , Conjuntos de Dados como Assunto , Domínios Proteicos , Propriedades de Superfície
3.
RNA Biol ; 12(7): 720-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25932908

RESUMO

Interactions between protein and RNA play a key role in many biological processes in the gene expression pathway. Those interactions are mediated through a variety of RNA-binding protein domains, among them the highly abundant RNA recognition motif (RRM). Here we studied protein-RNA complexes from different RNA binding domain families solved by NMR and x-ray crystallography. Characterizing the structural properties of the RNA at the binding interfaces revealed an unexpected number of nucleotides with unusual RNA conformations, specifically found in RNA-RRM complexes. Moreover, we observed that the RNA nucleotides that are directly involved in interactions with the RRM domains, via hydrogen bonds and hydrophobic contacts, are significantly enriched with unique RNA conformations. Further examination of the sequences binding the RRM domain showed a preference for G nucleotides in syn conformation to precede or to follow U nucleotides in the anti-conformation, and U nucleotides in C2' endo conformation to precede U and G nucleotides possessing the more common C3' endo conformation. These findings imply a possible mode of RNA recognition by the RRM domains which enables the recognition of a wide variety of different RNA sequences and shapes. Overall, this study suggests an additional way by which the RRM domain recognizes its RNA target, involving a conformational readout.


Assuntos
Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/química , RNA/química , Sequência de Bases , Humanos , Nucleotídeos/química , Nucleotídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
4.
RNA Biol ; 10(6): 982-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23618839

RESUMO

RNA molecules have highly versatile structures that can fold into myriad conformations, providing many potential pockets for binding small molecules. The increasing number of available RNA structures, in complex with proteins, small ligands and in free form, enables the design of new therapeutically useful RNA-binding ligands. Here we studied RNA ligand complexes from 10 RNA groups extracted from the protein data bank (PDB), including adaptive and non-adaptive complexes. We analyzed the chemical, physical, structural and conformational properties of binding pockets around the ligand. Comparing the properties of ligand-binding pockets to the properties of computed pockets extracted from all available RNA structures and RNA-protein interfaces, revealed that ligand-binding pockets, mainly the adaptive pockets, are characterized by unique properties, specifically enriched in rare conformations of the nucleobase and the sugar pucker. Further, we demonstrate that nucleotides possessing the rare conformations are preferentially involved in direct interactions with the ligand. Overall, based on our comprehensive analysis of RNA-ligand complexes, we suggest that the unique conformations adopted by RNA nucleotides play an important role in RNA recognition by small ligands. We term the recognition of a binding site by a ligand via the unique RNA conformations "RNA conformational readout." We propose that "conformational readout" is a general way by which RNA binding pockets are recognized and selected from an ensemble of different RNA states.


Assuntos
Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Sítios de Ligação , Biologia Computacional , Bases de Dados de Proteínas , Ligantes , Modelos Moleculares , RNA/genética , Proteínas de Ligação a RNA/química , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...