Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indoor Air ; 31(3): 769-782, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108019

RESUMO

Household humidification is widely practiced to combat dry indoor air. While the benefits of household humidification are widely perceived, its implications to the indoor air have not been critically appraised. In particular, ultrasonic humidifiers are known to generate fine particulate matter (PM). In this study, we first conducted laboratory experiments to investigate the size, quantity, and chemical composition of PM generated by an ultrasonic humidifier. The mass of PM generated showed a correlation with the total alkalinity of charge water, suggesting that CaCO3 is likely making a major contribution to PM. Ion chromatography analysis revealed a large amount of SO42- in PM, representing a previously unrecognized indoor source. Preliminary results of organic compounds being present in humidifier PM are also presented. A whole-house experiment was further conducted at an actual residential house, with five low-cost sensors (AirBeam) monitoring PM in real time. Operation of a single ultrasonic humidifier resulted in PM2.5 concentrations up to hundreds of µg m-3 , and its influence extended across the entire household. The transport and loss of PM2.5 depended on the rate of air circulation and ventilation. This study emphasizes the need to further investigate the impact of humidifier operation, both on human health and on the indoor atmospheric chemistry, for example, partitioning of acidic and basic compounds.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Umidificadores , Material Particulado , Poluentes Atmosféricos , Monitoramento Ambiental , Humanos , Compostos Orgânicos , Tamanho da Partícula , Ultrassom , Água
2.
Environ Sci Technol ; 54(19): 12484-12492, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32936620

RESUMO

Photochemical processing taking place in atmospheric aqueous phases serves as both a source and a sink of organic compounds. In aqueous environments, acid-base chemistry and, by extension, aqueous-phase pH, are an important yet often neglected factors to consider when investigating the kinetics of organic compounds. We have investigated the aqueous-phase OH-oxidation of pinic acid, cis-pinonic acid, limononic acid, and formic acid (FA) as a function of pH. We have also extended our studies to other organic acids (OAs) present in the water-soluble fraction of secondary organic aerosol (SOA) arising from the ozonolysis of α-pinene. Although all the OAs exhibited larger OH reactivities at pH 10, the pH dependence was dramatically different between FA, the smallest OA, and those that contained more than eight carbons. A kinetic box model was also employed to characterize our photoreactor and to provide confidence to our results. Our finding shows that the atmospheric lifetimes of small OAs (e.g., FA) are highly sensitive to cloud water pH. However, those of larger OAs and many other OAs in α-pinene SOA are affected to a much less extent. These results are of great importance for the simplification of cloud water chemistry models.


Assuntos
Compostos Orgânicos , Água , Aerossóis , Concentração de Íons de Hidrogênio , Monoterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...