Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891261

RESUMO

Wheat heading time is primarily governed by two loci: VRN-1 (response to vernalization) and PPD-1 (response to photoperiod). Five sets of near-isogenic lines (NILs) were studied with the aim of investigating the effect of the aforementioned genes on wheat vegetative period duration and 14 yield-related traits. Every NIL was sown in the hydroponic greenhouse of the Institute of Cytology and Genetics, SB RAS. To assess their allelic composition at the VRN-1 and PPD-1 loci, molecular markers were used. It was shown that HT in plants with the Vrn-A1vrn-B1vrn-D1 genotype was reduced by 29 and 21 days (p < 0.001) in comparison to HT in plants with the vrn-A1Vrn-B1vrn-D1 and the vrn-A1vrn-B1Vrn-D1 genotypes, respectively. In our study, we noticed a decrease in spike length as well as spikelet number per spike parameter for some NIL carriers of the Vrn-A1a allele in comparison to carriers of the Vrn-B1 allele. PCA revealed three first principal components (PC), together explaining more than 70% of the data variance. Among the studied genetic traits, the Vrn-A1a and Ppd-D1a alleles showed significant correlations with PCs. Regarding genetic components, significant correlations were calculated between PC3 and Ppd-B1a (-0.26, p < 0.05) and Vrn-B1 (0.57, p < 0.05) alleles. Thus, the presence of the Vrn-A1a allele affects heading time, while Ppd-D1a is associated with plant height reduction.

2.
Biology (Basel) ; 12(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887048

RESUMO

Translation efficiency modulates gene expression in prokaryotes. The comparative analysis of translation elongation efficiency characteristics of Ralstonia genus bacteria genomes revealed that these characteristics diverge in accordance with the phylogeny of Ralstonia. The first branch of this genus is a group of bacteria commonly found in moist environments such as soil and water that includes the species R. mannitolilytica, R. insidiosa, and R. pickettii, which are also described as nosocomial infection pathogens. In contrast, the second branch is plant pathogenic bacteria consisting of R. solanacearum, R. pseudosolanacearum, and R. syzygii. We found that the soil Ralstonia have a significantly lower number and energy of potential secondary structures in mRNA and an increased role of codon usage bias in the optimization of highly expressed genes' translation elongation efficiency, not only compared to phytopathogenic Ralstonia but also to Cupriavidus necator, which is closely related to the Ralstonia genus. The observed alterations in translation elongation efficiency of orthologous genes are also reflected in the difference of potentially highly expressed gene' sets' content among Ralstonia branches with different lifestyles. Analysis of translation elongation efficiency characteristics can be considered a promising approach for studying complex mechanisms that determine the evolution and adaptation of bacteria in various environments.

3.
Biology (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671807

RESUMO

We propose the trait-based method for quantifying the activity of functional groups in the human gut microbiome based on metatranscriptomic data. It allows one to assess structural changes in the microbial community comprised of the following functional groups: butyrate-producers, acetogens, sulfate-reducers, and mucin-decomposing bacteria. It is another way to perform a functional analysis of metatranscriptomic data by focusing on the ecological level of the community under study. To develop the method, we used published data obtained in a carefully controlled environment and from a synthetic microbial community, where the problem of ambiguity between functionality and taxonomy is absent. The developed method was validated using RNA-seq data and sequencing data of the 16S rRNA amplicon on a simplified community. Consequently, the successful verification provides prospects for the application of this method for analyzing natural communities of the human intestinal microbiota.

4.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499640

RESUMO

A number of methods for extracting the DNA of maternally inherited obligate intracellular bacteria Wolbachia from an insect host and its subsequent purification have been described in previous scholarship. As Wolbachia is present in the hosts' organisms in rather low quantities, these techniques used to be quite labor-intensive. For this paper, we analyzed them in detail, searched for a possibility to simplify and accelerate the protocol, and proposed an easy and effective method for isolating Wolbachia DNA from Drosophila melanogaster with a purity sufficient for genomic sequencing. Our method involves the centrifugation of homogenized flies or just their ovaries, as the most Wolbachia-enriched tissue, followed by the filtration of homogenate and extraction of DNA using a modified version of the Livak buffer protocol. The proportion of Wolbachia DNA in the total DNA was quantified based on the results of sequencing with the use of the Illumina MiSeq platform and a pipeline of bioinformatic analysis. For the two analyzed D. melanogaster lines infected with two different Wolbachia strains, the proportion was at least 68 and 94%, respectively.


Assuntos
Wolbachia , Animais , Wolbachia/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Análise de Sequência de DNA , Mapeamento Cromossômico , DNA , Simbiose
5.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555851

RESUMO

The maternally transmitted endocellular bacteria Wolbachia is a well-known symbiont of insects, demonstrating both negative and positive effects on host fitness. The previously found Wolbachia strain wMelPlus is characterized by a positive effect on the stress-resistance of its host Drosophila melanogaster, under heat stress conditions. This investigation is dedicated to studying the genomic underpinnings of such an effect. We sequenced two closely related Wolbachia strains, wMelPlus and wMelCS112, assembled their complete genomes, and performed comparative genomic analysis engaging available Wolbachia genomes from the wMel and wMelCS groups. Despite the two strains under study sharing very close gene-composition, we discovered a large (>1/6 of total genome) chromosomal inversion in wMelPlus, spanning through the region that includes the area of the inversion earlier found in the wMel group of Wolbachia genotypes. A number of genes in unique inversion blocks of wMelPlus were identified that might be involved in the induction of a stress-resistant phenotype in the host. We hypothesize that such an inversion could rearrange established genetic regulatory-networks, causing the observed effects of such a complex fly phenotype as a modulation of heat stress resistance. Based on our findings, we propose that wMelPlus be distinguished as a separate genotype of the wMelCS group, named wMelCS3.


Assuntos
Drosophila melanogaster , Wolbachia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Wolbachia/genética , Inversão Cromossômica , Genótipo , Resposta ao Choque Térmico/genética , Simbiose
6.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233299

RESUMO

Protein abundance is crucial for the majority of genetically regulated cell functions to act properly in prokaryotic organisms. Therefore, developing bioinformatic methods for assessing the efficiency of different stages of gene expression is of great importance for predicting the actual protein abundance. One of these steps is the evaluation of translation elongation efficiency based on mRNA sequence features, such as codon usage bias and mRNA secondary structure properties. In this study, we have evaluated correlation coefficients between experimentally measured protein abundance and predicted elongation efficiency characteristics for 26 prokaryotes, including non-model organisms, belonging to diverse taxonomic groups The algorithm for assessing elongation efficiency takes into account not only codon bias, but also number and energy of secondary structures in mRNA if those demonstrate an impact on predicted elongation efficiency of the ribosomal protein genes. The results show that, for a number of organisms, secondary structures are a better predictor of protein abundance than codon usage bias. The bioinformatic analysis has revealed several factors associated with the value of the correlation coefficient. The first factor is the elongation efficiency optimization type-the organisms whose genomes are optimized for codon usage only have significantly higher correlation coefficients. The second factor is taxonomical identity-bacteria that belong to the class Bacilli tend to have higher correlation coefficients among the analyzed set. The third is growth rate, which is shown to be higher for the organisms with higher correlation coefficients between protein abundance and predicted translation elongation efficiency. The obtained results can be useful for further improvement of methods for protein abundance prediction.


Assuntos
Biologia Computacional , Biossíntese de Proteínas , Códon/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo
7.
Int J Mol Sci ; 22(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065644

RESUMO

Autism spectrum disorder (ASD) is characterized by uncommon genetic heterogeneity and a high heritability concurrently. Most autoimmune disorders (AID), similarly to ASD, are characterized by impressive genetic heterogeneity and heritability. We conducted gene-set analyses and revealed that 584 out of 992 genes (59%) included in a new release of the SFARI Gene database and 439 out of 871 AID-associated genes (50%) could be attributed to one of four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, and 4. vitamin D3-sensitive genes. With the exception of FMRP targets, which are obviously associated with the direct involvement of local translation disturbance in the pathological mechanisms of ASD, the remaining categories are represented among AID genes in a very similar percentage as among ASD predisposition genes. Thus, mTOR signaling pathway genes make up 4% of ASD and 3% of AID genes, mTOR-modulated genes-31% of both ASD and AID genes, and vitamin D-sensitive genes-20% of ASD and 23% of AID genes. The network analysis revealed 3124 interactions between 528 out of 729 AID genes for the 0.7 cutoff, so the great majority (up to 67%) of AID genes are related to the mTOR signaling pathway directly or indirectly. Our present research and available published data allow us to hypothesize that both a certain part of ASD and AID comprise a connected set of disorders sharing a common aberrant pathway (mTOR signaling) rather than a vast set of different disorders. Furthermore, an immune subtype of the autism spectrum might be a specific type of autoimmune disorder with an early manifestation of a unique set of predominantly behavioral symptoms.


Assuntos
Doenças Autoimunes/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transtorno do Espectro Autista/genética , Colecalciferol/genética , Bases de Dados Genéticas , Proteína do X Frágil da Deficiência Intelectual/genética , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos
8.
Int J Mol Sci ; 20(24)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847491

RESUMO

Autism spectrum disorder (ASD) has a strong and complex genetic component with an estimate of more than 1000 genes implicated cataloged in SFARI (Simon's Foundation Autism Research Initiative) gene database. A significant part of both syndromic and idiopathic autism cases can be attributed to disorders caused by the mechanistic target of rapamycin (mTOR)-dependent translation deregulation. We conducted gene-set analyses and revealed that 606 out of 1053 genes (58%) included in the SFARI Gene database and 179 out of 281 genes (64%) included in the first three categories of the database ("high confidence", "strong candidate", and "suggestive evidence") could be attributed to one of the four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, 4. vitamin D3 sensitive genes. The additional gene network analysis revealed 43 new genes and 127 new interactions, so in the whole 222 out of 281 (79%) high scored genes from SFARI Gene database were connected with mTOR signaling activity and/or dependent on vitamin D3 availability directly or indirectly. We hypothesized that genetic and/or environment mTOR hyperactivation, including provocation by vitamin D deficiency, might be a common mechanism controlling the expressivity of most autism predisposition genes and even core symptoms of autism.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Vitamina D/genética , Redes Reguladoras de Genes/genética , Humanos
9.
Bioinformatics ; 33(6): 923-925, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28039164

RESUMO

Motivation: Protein synthesis is not a straight forward process and one gene locus can produce many isoforms, for example, by starting mRNA translation from alternative start sites. altORF evaluator (altORFev) predicts alternative open reading frames within eukaryotic mRNA translated by a linear scanning mechanism and its modifications (leaky scanning and reinitiation). The program reveals the efficiently translated altORFs recognized by the majority of 40S ribosomal subunits landing on the 5'-end of an mRNA. This information aids to reveal the functions of eukaryotic genes connected to synthesis of either unknown isoforms of annotated proteins or new unrelated polypeptides. Availability and Implementation: altORFev is available at http://www.bionet.nsc.ru/AUGWeb/ and has been developed in Java 1.8 using the BioJava library; and the Vaadin framework to produce the web service. Contact: ak@bionet.nsc.ru.


Assuntos
Genômica/métodos , Fases de Leitura Aberta , RNA Mensageiro/metabolismo , Software , Eucariotos/genética , Biossíntese de Proteínas , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...