Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 5: e3893, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29372115

RESUMO

BACKGROUND: As next generation sequence technology has advanced, there have been parallel advances in genome-scale analysis programs for determining evolutionary relationships as proxies for epidemiological relationship in public health. Most new programs skip traditional steps of ortholog determination and multi-gene alignment, instead identifying variants across a set of genomes, then summarizing results in a matrix of single-nucleotide polymorphisms or alleles for standard phylogenetic analysis. However, public health authorities need to document the performance of these methods with appropriate and comprehensive datasets so they can be validated for specific purposes, e.g., outbreak surveillance. Here we propose a set of benchmark datasets to be used for comparison and validation of phylogenomic pipelines. METHODS: We identified four well-documented foodborne pathogen events in which the epidemiology was concordant with routine phylogenomic analyses (reference-based SNP and wgMLST approaches). These are ideal benchmark datasets, as the trees, WGS data, and epidemiological data for each are all in agreement. We have placed these sequence data, sample metadata, and "known" phylogenetic trees in publicly-accessible databases and developed a standard descriptive spreadsheet format describing each dataset. To facilitate easy downloading of these benchmarks, we developed an automated script that uses the standard descriptive spreadsheet format. RESULTS: Our "outbreak" benchmark datasets represent the four major foodborne bacterial pathogens (Listeria monocytogenes, Salmonella enterica, Escherichia coli, and Campylobacter jejuni) and one simulated dataset where the "known tree" can be accurately called the "true tree". The downloading script and associated table files are available on GitHub: https://github.com/WGS-standards-and-analysis/datasets. DISCUSSION: These five benchmark datasets will help standardize comparison of current and future phylogenomic pipelines, and facilitate important cross-institutional collaborations. Our work is part of a global effort to provide collaborative infrastructure for sequence data and analytic tools-we welcome additional benchmark datasets in our recommended format, and, if relevant, we will add these on our GitHub site. Together, these datasets, dataset format, and the underlying GitHub infrastructure present a recommended path for worldwide standardization of phylogenomic pipelines.

2.
Microbiology (Reading) ; 153(Pt 2): 442-51, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17259615

RESUMO

The mating pair stabilization (Mps) protein of the F plasmid, TraG, is unique to F-like type IV secretion systems. TraG is a polytopic inner-membrane protein with a large C-terminal periplasmic domain that is required for piliation and Mps, whereas the N-terminal region is sufficient for pilus synthesis. The C-terminal region of TraG is thought to be cleaved by the host signal peptidase I to give a fragment called TraG* that is responsible for Mps. Using mutational analysis and cell localization studies, it was shown that TraG* is most probably an artifact caused by non-specific degradation. TraS (173 aa in F), which is involved in entry exclusion (Eex), blocks redundant conjugative DNA synthesis and transport between donor cells, suggesting that it interferes with a signalling pathway required to trigger DNA transfer. Using the F and R100 plasmids, TraG in the donor cell was found to recognize TraS in the recipient cell inner membrane, in a plasmid-specific manner. This activity mapped to aa 610-673 in F TraG, the only region that differs significantly from R100 TraG. Expression of traG or traG* in a recipient cell did not affect mating ability or Eex. These results suggest that TraG may be translocated to the recipient cell, where it contacts the inner membrane, initiating transfer, a process that is blocked by TraS.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Conjugação Genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator F/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fator F/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular
3.
Microbiology (Reading) ; 151(Pt 11): 3527-3540, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16272376

RESUMO

F plasmid TraN (602 aa, processed to 584 aa with 22 conserved cysteines), which is essential for F plasmid conjugation, is an outer-membrane protein involved in mating pair stabilization (MPS). Unlike R100 TraN, F TraN requires OmpA in the recipient cell for efficient MPS. The authors have identified three external loops (aa 172-187, 212-220 and 281-284) in the highly divergent region from aa 164 to aa 333 as candidates for interaction with OmpA. These loops were identified using both site-directed and random TnphoA/in mutagenesis to insert epitopes (31-aa or c-myc) into TraN and monitor their effect on sensitivity to external proteases and on mating ability. TraN is a hallmark protein of F-type IV secretion systems as demonstrated by blast searches of the databases. The C-terminal region is highly conserved and contains five of the six completely conserved cysteines. Mutation of these residues to serine demonstrated their importance in TraN function. TraN appears to require both intra- and intermolecular disulfide bond formation for its stability and structure as demonstrated by its instability in a dsbA mutant and its aberrant migration on SDS-polyacrylamide gels under non-reducing conditions or by cross-linking with bis(sulfosuccinimidyl)suberate (BS3). Thus, F TraN appears to have two domains: the N-terminal region is involved in OmpA interaction with OmpA during MPS; and the C-terminal region, which is rich in conserved cysteine residues, is essential for conjugation.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Conjugação Genética , Proteínas de Escherichia coli/química , Escherichia coli/genética , Fator F/genética , Regulação Bacteriana da Expressão Gênica , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Elementos de DNA Transponíveis , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...