Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Devices (Auckl) ; 17: 23-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38196508

RESUMO

Introduction: Common in vitro cell culture systems for testing implant material immune compatibility either rely on immortal human leukocyte cell lines or isolated primary cells. Compared to in vivo conditions, this generates an environment of substantially reduced complexity, often lacking important immune cell types, such as neutrophil granulocytes and others. The aim of this study was to establish a reliable test system for in vitro testing of implant materials under in vivo-like conditions. Methods: Test materials were incubated in closed, CO2-independent, tube-based culture vessels containing a proprietary cell culture medium and human whole blood in either a static or occasionally rotating system. Multiplex cytokine analysis was used to analyze immune cell reactions. Results: To demonstrate the applicability of the test system to implant materials, three commercially available barrier membranes (polytetrafluoroethylene (PTFE), polycaprolactone (PCL) and collagen) used for dental, trauma and maxillofacial surgery, were investigated for their potential interactions with immune cells. The results showed characteristic differences between the static and rotated incubation methods and in the overall activity profiles with very low immune cell responses to PTFE, intermediate ones to collagen and strong reactions to PCL. Conclusion: This in vitro human whole blood model, using a complex organotypic matrix, is an excellent, easily standardized tool for categorizing immune cell responses to implant materials. Compared to in vitro cell culture systems used for materials research, this new assay system provides a far more detailed picture of response patterns the immune system can develop when interacting with different types of materials and surfaces.

2.
Biomed Res Int ; 2020: 3481549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32461979

RESUMO

It has been widely shown that biomaterial surface topography can modulate host immune response, but a fundamental understanding of how different topographies contribute to pro-inflammatory or anti-inflammatory responses is still lacking. To investigate the impact of surface topography on immune response, we undertook a systematic approach by analyzing immune response to eight grades of medical grade polyurethane of increasing surface roughness in three in vitro models of the human immune system. Polyurethane specimens were produced with defined roughness values by injection molding according to the VDI 3400 industrial standard. Specimens ranged from 0.1 µm to 18 µm in average roughness (Ra), which was confirmed by confocal scanning microscopy. Immunological responses were assessed with THP-1-derived macrophages, human peripheral blood mononuclear cells (PBMCs), and whole blood following culture on polyurethane specimens. As shown by the release of pro-inflammatory and anti-inflammatory cytokines in all three models, a mild immune response to polyurethane was observed, however, this was not associated with the degree of surface roughness. Likewise, the cell morphology (cell spreading, circularity, and elongation) in THP-1-derived macrophages and the expression of CD molecules in the PBMC model on T cells (HLA-DR and CD16), NK cells (HLA-DR), and monocytes (HLA-DR, CD16, CD86, and CD163) showed no influence of surface roughness. In summary, this study shows that modifying surface roughness in the micrometer range on polyurethane has no impact on the pro-inflammatory immune response. Therefore, we propose that such modifications do not affect the immunocompatibility of polyurethane, thereby supporting the notion of polyurethane as a biocompatible material.


Assuntos
Materiais Biocompatíveis/química , Imunidade , Poliuretanos/química , Anti-Inflamatórios/imunologia , Citocinas/metabolismo , Antígenos HLA-DR/metabolismo , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/ultraestrutura , Macrófagos/imunologia , Macrófagos/ultraestrutura , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Monócitos/imunologia , Monócitos/ultraestrutura , Propriedades de Superfície , Linfócitos T/imunologia , Linfócitos T/ultraestrutura , Células THP-1
3.
Sci Rep ; 9(1): 13168, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511529

RESUMO

Toll-like receptors (TLRs) are important sentinels of bacterial and viral infection and thus fulfil a critical sensory role in innate immunity. Polo-like kinases (PLKs), a five membered family of Ser/Thr protein kinases, have long been studied for their role in mitosis and thus represent attractive therapeutic targets in cancer therapy. Recently, PLKs were implicated in TLR signaling in mice but the role of PLKs in TLR signaling in untransformed primary immune cells has not been addressed, even though PLK inhibitors are in clinical trials. We here identified several phospho-serine and phospho-threonine residues in the known TLR pathway kinases, Interleukin-1 receptor-associated kinase (IRAK) 2 and IRAK4. These sites lie in canonical polo-box motifs (PBM), sequence motifs known to direct recruitment of PLKs to client proteins. Interestingly, PLK1 was phosphorylated and PLK 2 and 3 mRNA induced upon TLR stimulation in primary immune cells, respectively. In whole blood, PLK inhibition disparately affected TLR mediated cytokine responses in a donor- and inhibitor-dependent fashion. Collectively, PLKs may thus potentially interface with TLR signaling in humans. We propose that temporary PLK inhibitor-mediated blockade of TLR-signaling in certain patients receiving such inhibitors during cancer treatment may cause adverse effects such as an increased risk of infections due to a then compromised ability of the TLR recognition system to sense and initiate cytokine responses to invading microbes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Monócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Toll-Like/metabolismo , Benzimidazóis/farmacologia , Sítios de Ligação/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Citocinas/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Monócitos/citologia , Monócitos/efeitos dos fármacos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células THP-1 , Tiofenos/farmacologia , Receptores Toll-Like/genética , Quinase 1 Polo-Like
4.
Hepatology ; 62(5): 1375-87, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26250868

RESUMO

UNLABELLED: Patients carrying very rare loss-of-function mutations in interleukin-1 receptor-associated kinase 4 (IRAK4), a critical signaling mediator in Toll-like receptor signaling, are severely immunodeficient, highlighting the paramount role of IRAK kinases in innate immunity. We discovered a comparatively frequent coding variant of the enigmatic human IRAK2, L392V (rs3844283), which is found homozygously in ∼15% of Caucasians, to be associated with a reduced ability to induce interferon-alpha in primary human plasmacytoid dendritic cells in response to hepatitis C virus (HCV). Cytokine production in response to purified Toll-like receptor agonists was also impaired. Additionally, rs3844283 was epidemiologically associated with a chronic course of HCV infection in two independent HCV cohorts and emerged as an independent predictor of chronic HCV disease. Mechanistically, IRAK2 L392V showed intact binding to, but impaired ubiquitination of, tumor necrosis factor receptor-associated factor 6, a vital step in signal transduction. CONCLUSION: Our study highlights IRAK2 and its genetic variants as critical factors and potentially novel biomarkers for human antiviral innate immunity.


Assuntos
Hepatite C Crônica/imunologia , Quinases Associadas a Receptores de Interleucina-1/genética , Genótipo , Células HEK293 , Humanos , Interferon-alfa/biossíntese , Interferons , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Interleucinas/genética , Polimorfismo de Nucleotídeo Único , Fator 6 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/fisiologia , Ubiquitinação
5.
Cell Host Microbe ; 17(4): 507-14, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25771792

RESUMO

Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically, pathogenic fungi induce neutrophilic MDSCs through the pattern recognition receptor Dectin-1 and its downstream adaptor protein CARD9. Fungal MDSC induction is further dependent on pathways downstream of Dectin-1 signaling, notably reactive oxygen species (ROS) generation as well as caspase-8 activity and interleukin-1 (IL-1) production. Additionally, exogenous IL-1ß induces MDSCs to comparable levels observed during C. albicans infection. Adoptive transfer and survival experiments show that MDSCs are protective during invasive C. albicans infection, but not A. fumigatus infection. These studies define an innate immune mechanism by which pathogenic fungi regulate host defense.


Assuntos
Aspergillus fumigatus/imunologia , Candida albicans/imunologia , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Neutrófilos/imunologia , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Candidíase/imunologia , Candidíase/microbiologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Lectinas Tipo C/metabolismo , Camundongos , Transdução de Sinais
6.
J Immunol ; 192(12): 5963-73, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24813206

RESUMO

TLRs 7 and 8 are pattern recognition receptors controlling antiviral host defense or autoimmune diseases. Apart from foreign and host RNA, synthetic RNA oligoribonucleotides (ORN) or small molecules of the imidazoquinoline family activate TLR7 and 8 and are being developed as therapeutic agonists. The structure-function relationships for RNA ORN and imidazoquinoline sensing and consequent downstream signaling by human TLR7 and TLR8 are unknown. Proteome- and genome-wide analyses in primary human monocyte-derived dendritic cells here showed that TLR8 sensing of RNA ORN versus imidazoquinoline translates to ligand-specific differential phosphorylation and transcriptional events. In addition, TLR7 and 8 ectodomains were found to discriminate between RNA ORN and imidazoquinolines by overlapping and nonoverlapping recognition sites to which murine loss-of-function mutations and human naturally occurring hyporesponsive polymorphisms map. Our data suggest TLR7 and TLR8 can signal in two different "modes" depending on the class of ligand. Considering RNA ORN and imidazoquinolines have been regarded as functionally interchangeable, our study highlights important functional incongruities whose understanding will be important for developing TLR7 or 8 therapeutics with desirable effector and safety profiles for in vivo application.


Assuntos
Oligorribonucleotídeos/farmacologia , Compostos de Quinolínio/farmacologia , RNA/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Células HEK293 , Humanos , Camundongos , Oligorribonucleotídeos/química , Estrutura Terciária de Proteína , Compostos de Quinolínio/química , RNA/química , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
7.
Cancer Res ; 73(24): 7232-42, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24154872

RESUMO

Toll-like receptors (TLR) are overexpressed on many types of cancer cells, including colorectal cancer cells, but little is known about the functional relevance of these immune regulatory molecules in malignant settings. Here, we report frequent single-nucleotide polymorphisms (SNP) in the flagellin receptor TLR5 and the TLR downstream effector molecules MyD88 and TIRAP that are associated with altered survival in a large cohort of Caucasian patients with colorectal cancer (n = 613). MYD88 rs4988453, a SNP that maps to a promoter region shared with the acetyl coenzyme-A acyl-transferase-1 (ACAA1), was associated with decreased survival of patients with colorectal cancer and altered transcriptional activity of the proximal genes. In the TLR5 gene, rs5744174/F616L was associated with increased survival, whereas rs2072493/N592S was associated with decreased survival. Both rs2072493/N592S and rs5744174/F616L modulated TLR5 signaling in response to flagellin or to different commensal and pathogenic intestinal bacteria. Notably, we observed a reduction in flagellin-induced p38 phosphorylation, CD62L shedding, and elevated expression of interleukin (IL)-6 and IL-1ß mRNA in human primary immune cells from TLR5 616LL homozygote carriers, as compared with 616FF carriers. This finding suggested that the well-documented effect of cytokines like IL-6 on colorectal cancer progression might be mediated by TLR5 genotype-dependent flagellin sensing. Our results establish an important link between TLR signaling and human colorectal cancer with relevance for biomarker and therapy development.


Assuntos
Neoplasias Colorretais/genética , Receptor 5 Toll-Like/genética , Acetil-CoA C-Aciltransferase/genética , Alelos , Neoplasias Colorretais/sangue , Neoplasias Colorretais/metabolismo , Flagelina/genética , Genótipo , Células HCT116 , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Análise de Sobrevida , Taxa de Sobrevida , Receptor 5 Toll-Like/metabolismo , Transfecção
8.
Blood ; 122(14): 2380-9, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23929856

RESUMO

NKp80 is a C-type lectin-like receptor broadly expressed on human natural killer (NK) cells, triggering cytotoxicity via an atypical cytoplasmic hemi-immunoreceptor tyrosine-based activation motif. As with other lectin-like NK receptors, NKp80 is encoded in the natural killer gene complex, but unlike most of these, adjacent to its ligand, ie, activation-induced C-type lectin (AICL). The reasons for the tight genetic linkage of this receptor-ligand pair remain elusive. Previous studies showed that NKp80 augments NK cell responses toward malignant and nonmalignant myeloid cells. Here, we report that resting human NK cells not only express NKp80 but also contain intracellular stores of AICL colocalizing with the Golgi complex. Domain-swapping experiments revealed that intracellular localization of AICL is determined by its C-type lectin-like ectodomain. Exposure of NK cells to monokines associated with conversion into memorylike cells induces substantial AICL cell surface expression, whereas NKp80 is downregulated, and NK cells become refractory to NKp80-mediated stimulation. AICL on monokine-exposed NK cells elicits NKp80-dependent effector responses by autologous NK cells and, hence, renders monokine-activated NK cells susceptible to NKp80-mediated cytolysis. Altogether, our data report a previously unrecognized regulatory circuit enabling autonomous control of human NK cell responses via the NKp80-AICL axis.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Receptores de Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/metabolismo , Linhagem Celular , Citometria de Fluxo , Humanos , Immunoblotting , Lectinas Tipo C/genética , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/genética , Microscopia Confocal , Receptores de Células Matadoras Naturais/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
J Immunol ; 186(2): 657-61, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21149606

RESUMO

The human NK cell receptor NKp80 stimulates cytotoxicity upon engagement of its genetically linked ligand AICL. However, the mechanisms underlying NKp80-mediated signaling are unknown. In this study, we dissected NKp80 signaling using the NK cell line NK92MI. We demonstrated that NKp80, but not NKp80 mutated at tyrosine 7 (NKp80/Y7F), is tyrosine phosphorylated. Accordingly, NKp80/Y7F, but not NKp80/Y30F or NKp80/Y37F, failed to induce cytotoxicity. NKp80 phosphopeptides comprising the hemi-ITAM-like sequence surrounding tyrosine 7 bound Lck- and Syk-family kinases; accordingly, cross-linking of NKp80, but not NKp80/Y7F, induced Syk phosphorylation. Moreover, inhibition of Syk kinase, but not ZAP-70 kinase, impaired cytotoxic responses through NKp80. Atypical residues in the hemi-ITAM-like motif of NKp80 cause an altered stoichiometry of phosphorylation but did not substantially affect NK cytotoxicity. Altogether, these results show that NKp80 uses an atypical hemi-ITAM and Syk kinase to trigger cellular cytotoxicity.


Assuntos
Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/fisiologia , Ativação Linfocitária/imunologia , Receptores de Células Matadoras Naturais/fisiologia , Motivos de Aminoácidos/imunologia , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Células Matadoras Naturais/enzimologia , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Fosfopeptídeos/metabolismo , Fosfopeptídeos/fisiologia , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais/imunologia , Quinase Syk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...