Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731535

RESUMO

Microstructure and mechanical properties of two TiAl-based alloys with nominal composition Ti-42.6Al-8.7Nb-0.3Ta-2.0C and Ti-41.0Al-8.7Nb-0.3Ta-3.6C (in at.%) were investigated and compared. The alloys were prepared by vacuum induction melting, followed by centrifugal casting. The as-cast samples were subjected to hot isostatic pressing and heat treatment consisting of solution annealing in ß (Ti-based solid solution) phase field, cooling at a constant rate and stabilization annealing. The microstructure of the alloys consists of α2 (Ti3Al) + γ (TiAl) lamellar grains, single γ phase, coarse Ti2AlC particles, and irregular shaped α2 phase. The increase in the content of C at the expense of decreasing Al in the studied alloys affects solid-state phase transformation temperatures and leads to a decrease in size of grains and primary Ti2AlC particles, increase in the volume fraction of reinforcing carbide particles, decrease in the volume fraction of lamellar colonies, and widening of the grain boundaries. Long-term ageing at 800 °C has no effect on the grain size but leads to the formation of Ti4Al3Nb particles and increase in interlamellar spacing. The Vickers hardness, microhardness of lamellar grains, indentation nanohardness, and elastic modulus of the boundary γ phase decrease during ageing. The Ti-42.6Al-8.7Nb-0.3Ta-2.0C alloy shows improved creep resistance compared to that of Ti-41.0Al-8.7Nb-0.3Ta-3.6C and some reference TiAl-based alloys at a temperature of 800 °C and applied stress of 200 MPa.


Assuntos
Materiais Biocompatíveis/química , Teste de Materiais , Titânio/química , Dureza
2.
J Mech Behav Biomed Mater ; 90: 45-53, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30343170

RESUMO

Metallic implant materials are biomaterials that have experienced major development over the last fifty years, yet some demands posed to them have not been addressed. For the osseointegration process and the outcome of endosseous implantation, it is crucial to reduce the stress shielding effect and achieve sufficient biocompatibility. Powder metallurgy (PM) was utilized in this study to fabricate a new type of titanium (Ti) + magnesium (Mg) bioactive composite to enable stress-shielding reduction and obtain better biocompatibility compared with that of the traditional Ti and Ti alloys used for dental implants. Such composites are produced by well-known cost-effective and widely used PM methods, which eliminate the need for complex and costly Ti casting used in traditional implant production. The relation between the microstructure and mechanical properties of as-extruded Ti + (0-24) vol% Mg composites was investigated with respect to the Mg content. The microstructure of the composites consisted of a biodegradable Mg component in the form of filaments, elongated along the direction of extrusion, which were embedded within a permanent, bioinert Ti matrix. As the Mg content was increased, the discrete filaments became interconnected with each other and formed a continuous Mg network. Young's modulus (E) of the composites was reduced to 81 GPa, while other tensile mechanical properties were maintained at the values required for a dental implant material. The corrosion behavior of the Ti + Mg composites was studied during immersion in a Hank's balanced salt solution (HBSS) for up to 21 days. The elution of Mg pores formed at former Mg sites led to a further decrease of E to 74 GPa. The studied compositions showed that a new Ti + Mg metallic composite should be promising for load-bearing applications in endosseous dental implants in the future.


Assuntos
Magnésio/química , Fenômenos Mecânicos , Metalurgia , Titânio/química , Ligas/química , Teste de Materiais , Pós , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...