Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37762507

RESUMO

T-cadherin is a regulator of blood vessel remodeling and angiogenesis, involved in adiponectin-mediated protective effects in the cardiovascular system and in skeletal muscles. GWAS study has previously demonstrated a SNP in the Cdh13 gene to be associated with hypertension. However, the role of T-cadherin in regulating blood pressure has not been experimentally elucidated. Herein, we generated Cdh13∆Exon3 mice lacking exon 3 in the Cdh13 gene and described their phenotype. Cdh13∆Exon3 mice exhibited normal gross morphology, life expectancy, and breeding capacity. Meanwhile, their body weight was considerably lower than of WT mice. When running on a treadmill, the time spent running and the distance covered by Cdh13∆Exon3 mice was similar to that of WT. The resting blood pressure in Cdh13∆Exon3 mice was slightly higher than in WT, however, upon intensive physical training their systolic blood pressure was significantly elevated. While adiponectin content in the myocardium of Cdh13∆Exon3 and WT mice was within the same range, adiponectin plasma level was 4.37-fold higher in Cdh13∆Exon3 mice. Moreover, intensive physical training augmented the AMPK phosphorylation in the skeletal muscles and myocardium of Cdh13∆Exon3 mice as compared to WT. Our data highlight a critically important role of T-cadherin in regulation of blood pressure and stamina in mice, and may shed light on the pathogenesis of hypertension.


Assuntos
Adiponectina , Hipertensão , Animais , Camundongos , Pressão Sanguínea , Adiponectina/genética , Caderinas/genética , Hipertensão/genética
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674896

RESUMO

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Assuntos
COVID-19 , Lesão Pulmonar , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , COVID-19/complicações , Fibrose , Plasminogênio , Bleomicina/toxicidade
3.
Front Mol Neurosci ; 15: 865858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875662

RESUMO

Urokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored receptor of urokinase (uPA), which is involved in brain development, nerve regeneration, wound healing and tissue remodeling. We have recently shown that Plaur, which encodes uPAR, is an early response gene in murine brain. Assumingly, diverse functions of Plaur might be attributed to hypothetical, unidentified microRNAs encoded within introns of the Plaur gene. Using a bioinformatic approach we identified novel small RNAs within the Plaur gene and named them Plaur-miR1-3p and Plaur-miR1-5p. We confirmed Plaur-dependent expression of Plaur-miR1-3p and Plaur-miR1-5p in the mouse brain and mouse neuroblastoma Neuro2a cells. Utilizing an in silico MR-microT algorithm in DianaTools we selected two target genes - Mef2d and Emx2 with the highest binding scores to small RNAs selected from identified Plaur-Pre-miR1. Furthermore, sequencing of mouse brain samples for Plaur-miR1-5p target genes revealed two more genes-Nrip3 and Snrnp200. The expression of Emx2, Mef2d, and Snrnp200 in the mouse brain and Mef2d and Snrnp200 in Neuro2a cells correlated with expression of Plaur and small RNAs-Plaur-miR1-3p and Plaur-miR1-5p. Finally, we demonstrated elevated MEF2D protein expression in the mouse brain after Plaur induction and displayed activating effects of Plaur-miR1-5p on Mef2d expression in Neuro2a cells using Luciferase reporter assay. In conclusion, we have identified Plaur-miR1-3p and Plaur-miR1-5p as novel small RNAs encoded in the Plaur gene. This finding expands the current understanding of Plaur function in brain development and functioning.

4.
Cancers (Basel) ; 14(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35205745

RESUMO

uPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks. We have recently shown that uPAR downregulation in neuroblastoma promotes epithelial-mesenchymal transition (EMT), potentially associated with metastasis and chemoresistance. We used data mining to evaluate the role of uPAR expression in primary and relapsed human neuroblastomas. To model the decreased uPAR expression, we targeted uPAR using CRISPR/Cas9 and shRNA in neuroblastoma Neuro2a cells and evaluated their chemosensitivity in vitro as well as tumor growth and metastasis in vivo. We demonstrate that the initially high PLAUR expression predicts poor survival in human neuroblastoma. However, relapsed neuroblastomas have a significantly decreased PLAUR expression. uPAR targeting in neuroblastoma Neuro2a cells leads to p38 activation and an increased p21 expression (suggesting a dormant phenotype). The dormancy in neuroblastoma cells can be triggered by the disruption of uPAR-integrin interaction. uPAR-deficient cells are less sensitive to cisplatin and doxorubicin treatment and exhibit lower p53 activation. Finally, low uPAR-expressing Neuro2a cells formed smaller primary tumors, but more frequent metastasis in mice. To the best of our knowledge, this is the first study revealing the pathological role of dormant uPAR-deficient cancer cells having a chemoresistant and motile phenotype.

5.
Biochemistry (Mosc) ; 86(10): 1326-1341, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903157

RESUMO

Neurotrophin receptors regulate neuronal survival and network formation, as well as synaptic plasticity in the brain via interaction with their ligands. Here, we examined early changes in the expression of neurotrophin receptor genes Ntk1 (TrkA), Ntrk2 (TrkB), Ntrk3 (TrkC), Ngfr (p75NTR) and miRNAs that target theses gens in the mouse brain after induction of seizure activity by pentylenetetrazol. We found that expression of Ntrk3 and Ngfr was upregulated in the cortex and the hippocampus 1-3 hours after the seizures, while Ntrk2 expression increased after 3-6 hours in the anterior cortex and after 1 and 6 hours in the hippocampus. At the same time, the ratio of Bcl-2/Bax signaling proteins increased in the anterior and posterior cortex, but not in the hippocampus, suggesting the activation of anti-apoptotic signaling. Expression of miRNA-9 and miRNA-29a, which were predicted to target Ntrk3, was upregulated in the hippocampus 3 hours after pentylenetetrazol injection. Therefore, early cellular response to seizures in the brain includes induction of the Ntrk2, Ntrk3, Ngfr, miRNA-9, and miRNA-29a expression, as well as activation of Bcl-2 and Bax signaling pathways, which may characterize them as important mediators of neuronal adaptation and survival upon induction of the generalized brain activity.


Assuntos
Encéfalo/efeitos dos fármacos , MicroRNAs/genética , Neurônios/efeitos dos fármacos , Pentilenotetrazol/farmacologia , Convulsões/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Neurônios/metabolismo , Neurônios/patologia , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/patologia
6.
J Cell Physiol ; 235(9): 6268-6286, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31990070

RESUMO

The urokinase system is involved in a variety of physiological processes, such as fibrinolysis, matrix remodeling, wound healing, and regeneration. Upon binding to its cognate receptor urokinase-type plasminogen activator receptor (uPAR), urokinase-type plasminogen activator (uPA) catalyzes the conversion of plasminogen to plasmin and the activation of matrix metalloproteases. Apart from this, uPA-uPAR interaction can lead to the activation of transcription factors, mitogen-activated protein kinase signaling pathways and RTK cascades. Elevated expression of uPA and uPAR is markedly associated with cancer progression and metastasis and correlates with a poor prognosis in clinics. Targeting the urokinase system has proved to be effective in experimental models in vitro and in vivo, however, in clinics the inhibition of the uPA/uPAR system has fallen short of expectations, suggesting that the question of the functional relevance of uPA/uPAR system is far from being moot. Recently, using CRISPR/Cas9 technology, we have shown that uPAR knockout decreases the proliferation of neuroblastoma Neuro2a cells in vitro. In the present study we demonstrate that uPAR expression is essential for maintaining the epithelial phenotype in Neuro2a cells and that uPAR silencing promotes epithelial-mesenchymal transition (EMT) and increased cell migration. Accordingly, uPAR knockout results in the downregulation of epithelial markers (E-cadherin, occludin, and claudin-5) and in the increase of mesenchymal markers (N-cadherin, α-smooth muscle actin, and interleukin-6). In search of the molecular mechanism underlying these changes, we identified uPA as a key component. Two key insights emerged as a result of this work: in the absence of uPAR, uPA is translocated into the nucleus where it is presumably involved in the activation of transcription factors (nuclear factor κB and Snail) resulting in EMT. In uPAR-expressing cells, uPAR functions as a uPA "trap" that binds uPA on the cell surface and promotes controlled uPA internalization and degradation in lysosomes.


Assuntos
Núcleo Celular/genética , Proteínas de Membrana/genética , Neuroblastoma/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Neuroblastoma/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...