Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 107: 102064, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34456021

RESUMO

A time-dependent model of Margalefidinium polykrikoides, a mixotrophic dinoflagellate, cell growth was implemented to assess controls on blooms in the Lafayette River, a shallow, tidal sub-tributary of the lower Chesapeake Bay. Simulated cell growth included autotrophic and heterotrophic contributions. Autotrophic cell growth with no nutrient limitation resulted in a bloom but produced chlorophyll concentrations that were 45% less than observed bloom concentrations (~80 mg Chl m-3 vs. 145 mg Chl m-3) and a bloom progression that did not match observations. Excystment (cyst germination) was important for bloom initiation, but did not influence the development of algal biomass or bloom duration. Encystment (cyst formation) resulted in small losses of biomass throughout the bloom but similarly, did not influence M. polykrikoides cell density or the duration of blooms. In contrast, the degree of heterotrophy significantly impacted cell densities achieved and bloom duration. When heterotrophy contributed a constant 30% to cell growth, and dissolved inorganic nitrogen was not limiting, simulated chlorophyll concentrations were within those observed during blooms (maximum ~140 mg Chl m-3). However, nitrogen limitation quenched the maximum chlorophyll concentration by a factor of three. Specifying heterotrophy as an increasing function of nutrient limitation, allowing it to contribute up to 50% and 70% of total growth, resulted in simulated maximum chlorophyll concentrations of 90 mg Chl m-3 and 180 mg Chl m-3, respectively. This suggested that blooms of M. polykrikoides in the Lafayette River are fortified and maintained by substantial heterotrophic nutritional inputs. The timing and progression of the simulated bloom was controlled by the temperature range, 23 °C to 28 °C, that supports M. polykrikoides growth. Temperature increases of 0.5 °C and 1.0 °C, consistent with current warming trends in the lower Chesapeake Bay due to climate change, shifted the timing of bloom initiation to be earlier and extended the duration of blooms; maximum bloom magnitude was reduced by 50% and 65%, respectively. Warming by 5 °C suppressed the summer bloom. The simulations suggested that the timing of M. polykrikoides blooms in the Lafayette River is controlled by temperature and the bloom magnitude is determined by trade-offs between the severity of nutrient limitation and the relative contribution of mixotrophy to cell growth.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Baías , Rios , Temperatura
2.
J Theor Biol ; 271(1): 27-43, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21056580

RESUMO

Crassostrea oysters are protandrous hermaphrodites. Sex is thought to be determined by a single gene with a dominant male allele M and a recessive protandrous allele F, such that FF animals are protandrous and MF animals are permanent males. We investigate the possibility that a reduction in generation time, brought about for example by disease, might jeopardize retention of the M allele. Simulations show that MF males have a significantly lessened lifetime fecundity when generation time declines. The allele frequency of the M allele declines and eventually the M allele is lost. The probability of loss is modulated by population abundance. As abundance increases, the probability of M allele loss declines. Simulations suggest that stabilization of the female-to-male ratio when generation time is long is the dominant function of the M allele. As generation time shortens, the raison d'être for the M allele also fades as mortality usurps the stabilizing role. Disease and exploitation have shortened oyster generation time: one consequence may be to jeopardize retention of the M allele. Two alternative genetic bases for protandry also provide stable sex ratios when generation time is long; an F-dominant protandric allele and protandry restricted to the MF heterozygote. In both cases, simulations show that FF individuals become rare in the population at high abundance and/or long generation time. Protandry restricted to the MF heterozygote maintains sex ratio stability over a wider range of generation times and abundances than the alternatives, suggesting that sex determination based on a male-dominant allele (MM/MF) may not be the optimal solution to the genetic basis for protandry in Crassostrea.


Assuntos
Modelos Genéticos , Ostreidae/genética , Processos de Determinação Sexual/genética , Animais , Feminino , Frequência do Gene , Masculino , Densidade Demográfica , Dinâmica Populacional , Razão de Masculinidade
3.
Environ Manage ; 31(1): 100-21, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12447579

RESUMO

A hydrodynamic-oyster population model was developed to assess the effect of changes in freshwater inflow on oyster populations in Galveston Bay, Texas, USA. The population model includes the effects of environmental conditions, predators, and the oyster parasite, Perkinsus marinus, on oyster populations. The hydrodynamic model includes the effects of wind stress, river runoff, tides, and oceanic exchange on the circulation of the bay. Simulations were run for low, mean, and high freshwater inflow conditions under the present (1993) hydrology and predicted hydrologies for 2024 and 2049 that include both changes in total freshwater inflow and diversions of freshwater from one primary drainage basin to another. Freshwater diversion to supply the Houston metropolitan area is predicted to negatively impact oyster production in Galveston Bay. Fecundity and larval survivorship both decline. Mortality from Perkinsus marinus increases, but to a lesser extent. A larger negative impact in 2049 relative to 2024 originates from the larger drop in fecundity under that hydrology. Changes in recruitment and mortality, resulting in lowered oyster abundance, occur because the bay volume available for mixing freshwater input from the San Jacinto and Buffalo Bayou drainage basins that drain metropolitan Houston is small in comparison to the volume of Trinity Bay that presently receives the bulk of the bay's freshwater inflow. A smaller volume for mixing results in salinities that decline more rapidly and to a greater extent under conditions of high freshwater discharge.Thus, the decline in oyster abundance results from a disequilibrium between geography and salinity brought about by freshwater diversion. Although the bay hydrology shifts, available hard substrate does not. The simulations stress the fact that it is not just the well-appreciated reduction in freshwater inflow that can result in decreased oyster production. Changing the location of freshwater inflow can also significantly impact the bay environment, even if the total amount of freshwater inflow does not change.


Assuntos
Modelos Teóricos , Ostreidae , Movimentos da Água , Abastecimento de Água , Animais , Feminino , Larva , Masculino , Mortalidade , Dinâmica Populacional , Sobrevida , Texas , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...