Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(23): 230403, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684102

RESUMO

It is well known that the bosonic Hubbard model possesses a Mott insulator phase. Likewise, it is known that the Dicke model exhibits a self-organized superradiant phase. By implementing an optical lattice inside of a high-finesse optical cavity, both models are merged such that an extended Hubbard model with cavity-mediated infinite range interactions arises. In addition to a normal superfluid phase, two superradiant phases are found, one of them coherent and hence superfluid and one incoherent Mott insulating.

2.
Phys Rev Lett ; 113(7): 070404, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25170694

RESUMO

A superfluid atomic gas is prepared inside an optical resonator with an ultranarrow bandwidth on the order of the single photon recoil energy. When a monochromatic off-resonant laser beam irradiates the atoms, above a critical intensity the cavity emits superradiant light pulses with a duration on the order of its photon storage time. The atoms are collectively scattered into coherent superpositions of discrete momentum states, which can be precisely controlled by adjusting the cavity resonance frequency. With appropriate pulse sequences the entire atomic sample can be collectively accelerated or decelerated by multiples of two recoil momenta. The instability boundary for the onset of matter wave superradiance is recorded and its main features are explained by a mean field model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...