Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7658, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169827

RESUMO

Animals sense sounds through hierarchical neural pathways that ultimately reach higher-order cortices to extract complex acoustic features, such as vocalizations. Elucidating how spectrotemporal integration varies along the hierarchy from primary to higher-order auditory cortices is a crucial step in understanding this elaborate sensory computation. Here we used two-photon calcium imaging and two-tone stimuli with various frequency-timing combinations to compare spectrotemporal integration between primary (A1) and secondary (A2) auditory cortices in mice. Individual neurons showed mixed supralinear and sublinear integration in a frequency-timing combination-specific manner, and we found unique integration patterns in these two areas. Temporally asymmetric spectrotemporal integration in A1 neurons suggested their roles in discriminating frequency-modulated sweep directions. In contrast, temporally symmetric and coincidence-preferring integration in A2 neurons made them ideal spectral integrators of concurrent multifrequency sounds. Moreover, the ensemble neural activity in A2 was sensitive to two-tone timings, and coincident two-tones evoked distinct ensemble activity patterns from the linear sum of component tones. Together, these results demonstrate distinct roles of A1 and A2 in encoding complex acoustic features, potentially suggesting parallel rather than sequential information extraction between these regions.


Assuntos
Córtex Auditivo , Percepção Auditiva , Animais , Camundongos , Percepção Auditiva/fisiologia , Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Som
2.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747812

RESUMO

Animals sense sounds through hierarchical neural pathways that ultimately reach higher-order cortices to extract complex acoustic features, such as vocalizations. Elucidating how spectrotemporal integration varies along the hierarchy from primary to higher-order auditory cortices is a crucial step in understanding this elaborate sensory computation. Here we used two-photon calcium imaging and two-tone stimuli with various frequency-timing combinations to compare spectrotemporal integration between primary (A1) and secondary (A2) auditory cortices in mice. Individual neurons showed mixed supralinear and sublinear integration in a frequency-timing combination-specific manner, and we found unique integration patterns in these two areas. Temporally asymmetric spectrotemporal integration in A1 neurons enabled their discrimination of frequency-modulated sweep directions. In contrast, temporally symmetric and coincidence-preferring integration in A2 neurons made them ideal spectral integrators of concurrent multifrequency sounds. Moreover, the ensemble neural activity in A2 was sensitive to two-tone timings, and coincident two-tones evoked distinct ensemble activity patterns from the linear sum of component tones. Together, these results demonstrate distinct roles of A1 and A2 in encoding complex acoustic features, potentially suggesting parallel rather than sequential information extraction between these regions.

3.
Cereb Cortex ; 33(6): 3293-3310, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35834935

RESUMO

Understanding computational principles in hierarchically organized sensory systems requires functional parcellation of brain structures and their precise targeting for manipulations. Although brain atlases are widely used to infer area locations in the mouse neocortex, it has been unclear whether stereotaxic coordinates based on standardized brain morphology accurately represent functional domains in individual animals. Here, we used intrinsic signal imaging to evaluate the accuracy of area delineation in the atlas by mapping functionally-identified auditory cortices onto bregma-based stereotaxic coordinates. We found that auditory cortices in the brain atlas correlated poorly with the true complexity of functional area boundaries. Inter-animal variability in functional area locations predicted surprisingly high error rates in stereotaxic targeting with atlas coordinates. This variability was not simply attributed to brain sizes or suture irregularities but instead reflected differences in cortical geography across animals. Our data thus indicate that functional mapping in individual animals is essential for dissecting cortical area-specific roles with high precision.


Assuntos
Córtex Auditivo , Neocórtex , Camundongos , Animais , Imageamento Tridimensional , Encéfalo/anatomia & histologia , Mapeamento Encefálico/métodos , Córtex Auditivo/diagnóstico por imagem , Cabeça , Técnicas Estereotáxicas , Imageamento por Ressonância Magnética/métodos
4.
Nat Commun ; 12(1): 4610, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326331

RESUMO

Integration of multi-frequency sounds into a unified perceptual object is critical for recognizing syllables in speech. This "feature binding" relies on the precise synchrony of each component's onset timing, but little is known regarding its neural correlates. We find that multi-frequency sounds prevalent in vocalizations, specifically harmonics, preferentially activate the mouse secondary auditory cortex (A2), whose response deteriorates with shifts in component onset timings. The temporal window for harmonics integration in A2 was broadened by inactivation of somatostatin-expressing interneurons (SOM cells), but not parvalbumin-expressing interneurons (PV cells). Importantly, A2 has functionally connected subnetworks of neurons preferentially encoding harmonic over inharmonic sounds. These subnetworks are stable across days and exist prior to experimental harmonics exposure, suggesting their formation during development. Furthermore, A2 inactivation impairs performance in a discrimination task for coincident harmonics. Together, we propose A2 as a locus for multi-frequency integration, which may form the circuit basis for vocal processing.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Interneurônios/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Som
5.
Nat Commun ; 12(1): 314, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436635

RESUMO

Detecting the direction of frequency modulation (FM) is essential for vocal communication in both animals and humans. Direction-selective firing of neurons in the primary auditory cortex (A1) has been classically attributed to temporal offsets between feedforward excitatory and inhibitory inputs. However, it remains unclear how cortical recurrent circuitry contributes to this computation. Here, we used two-photon calcium imaging and whole-cell recordings in awake mice to demonstrate that direction selectivity is not caused by temporal offsets between synaptic currents, but by an asymmetry in total synaptic charge between preferred and non-preferred directions. Inactivation of cortical somatostatin-expressing interneurons (SOM cells) reduced direction selectivity, revealing its cortical contribution. Our theoretical models showed that charge asymmetry arises due to broad spatial topography of SOM cell-mediated inhibition which regulates signal amplification in strongly recurrent circuitry. Together, our findings reveal a major contribution of recurrent network dynamics in shaping cortical tuning to behaviorally relevant complex sounds.


Assuntos
Córtex Auditivo/fisiologia , Rede Nervosa/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Dinâmica não Linear , Somatostatina/metabolismo , Som , Sinapses/metabolismo
6.
Sci Signal ; 11(524)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615516

RESUMO

The transcription factors p53 and p73 are critical to the induction of apoptotic cell death, particularly in response to cell stress that activates c-Jun N-terminal kinase (JNK). Mutations in the DNA-binding domain of p53, which are commonly seen in cancers, result in conformational changes that enable p53 to interact with and inhibit p73, thereby suppressing apoptosis. In contrast, wild-type p53 reportedly does not interact with p73. We found that JNK-mediated phosphorylation of Thr81 in the proline-rich domain (PRD) of p53 enabled wild-type p53, as well as mutant p53, to form a complex with p73. Structural algorithms predicted that phosphorylation of Thr81 exposes the DNA-binding domain in p53 to enable its binding to p73. The dimerization of wild-type p53 with p73 facilitated the expression of apoptotic target genes [such as those encoding p53-up-regulated modulator of apoptosis (PUMA) and Bcl-2-associated X protein (BAX)] and, subsequently, the induction of apoptosis in response to JNK activation by cell stress in various cells. Thus, JNK phosphorylation of mutant and wild-type p53 promotes the formation of a p53/p73 complex that determines cell fate: apoptosis in the context of wild-type p53 or cell survival in the context of the mutant. These findings refine our current understanding of both the mechanistic links between p53 and p73 and the functional role for Thr81 phosphorylation.


Assuntos
Apoptose , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/química , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Proteína Tumoral p73/química , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...