Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 412(19): 4749-4760, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32474725

RESUMO

Digital polymerase chain reaction (dPCR) methodology has been asserted to be a "potentially primary" analytical approach for assigning DNA concentration. The essence of dPCR measurements is the independent dispersal of fragments into multiple reaction partitions, amplifying fragments containing a target nucleotide sequence until the signal from all partitions containing at least one such fragment rises above threshold, and then determining the proportion of partitions with an above-threshold signal. Should originally double-stranded DNA (dsDNA) fragments be converted into two single strands (ssDNA) prior to dispersal, the dPCR measurements could be biased high by as much as a factor of two. Realizing dPCR's metrological potential therefore requires analytical methods for determining the proportion of ssDNA in nominally dsDNA samples. To meet this need, we have investigated several approaches to this determination: A260 ratio, dPCR ratio, cdPCR staircase, and ddPCR enzyme. In our hands, only the endonuclease-based approach provides adequately accurate estimates for relatively small ssDNA proportions. We present four (enzyme, assay) pairs that provide self-consistent results for human nuclear DNA extracts. However, the proportion of ssDNA differs by as much as 50% between assays, apparently related to the guanine-cytosine (GC) content of the fragment near the assay's target sequence. While materials extracted by us have no more than 6% ssDNA content even after long storage, a commercially obtained PCR assay calibrant contains ≈18% ssDNA. Graphical abstract.


Assuntos
Núcleo Celular/química , DNA/análise , Reação em Cadeia da Polimerase/métodos , Núcleo Celular/genética , DNA/genética , DNA de Cadeia Simples/análise , DNA de Cadeia Simples/genética , Feminino , Temperatura Alta , Humanos , Masculino , Desnaturação de Ácido Nucleico
2.
Forensic Sci Int Genet ; 37: 81-94, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103146

RESUMO

Interlaboratory studies are a type of collaborative exercise in which many laboratories are presented with the same set of data to interpret, and the results they produce are examined to get a "big picture" view of the effectiveness and accuracy of analytical protocols used across participating laboratories. In 2005 and again in 2013, the Applied Genetics Group of the National Institute of Standards and Technology (NIST) conducted interlaboratory studies involving DNA mixture interpretation. In the 2005 NIST MIX05 study, 69 laboratories interpreted data in the form of electropherograms of two-person DNA mixtures representing four different mock sexual assault cases with different contributor ratios. In the 2013 NIST MIX13 study,108 laboratories interpreted electropherogram data for five different case scenarios involving two, three, or four contributors, with some of the contributors potentially related. This paper describes the design of these studies, the variations observed among laboratory results, and lessons learned.


Assuntos
Impressões Digitais de DNA , DNA/genética , Laboratórios/estatística & dados numéricos , Repetições de Microssatélites , Alelos , Canadá , Eletroforese , Feminino , Genética Forense/normas , Genética Forense/estatística & dados numéricos , Órgãos Governamentais , Humanos , Laboratórios/normas , Masculino , Reação em Cadeia da Polimerase , Delitos Sexuais , Estados Unidos
3.
Anal Bioanal Chem ; 410(12): 2879-2887, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29556737

RESUMO

The highly multiplexed polymerase chain reaction (PCR) assays used for forensic human identification perform best when used with an accurately determined quantity of input DNA. To help ensure the reliable performance of these assays, we are developing a certified reference material (CRM) for calibrating human genomic DNA working standards. To enable sharing information over time and place, CRMs must provide accurate and stable values that are metrologically traceable to a common reference. We have shown that droplet digital PCR (ddPCR) limiting dilution end-point measurements of the concentration of DNA copies per volume of sample can be traceably linked to the International System of Units (SI). Unlike values assigned using conventional relationships between ultraviolet absorbance and DNA mass concentration, entity-based ddPCR measurements are expected to be stable over time. However, the forensic community expects DNA quantity to be stated in terms of mass concentration rather than entity concentration. The transformation can be accomplished given SI-traceable values and uncertainties for the number of nucleotide bases per human haploid genome equivalent (HHGE) and the average molar mass of a nucleotide monomer in the DNA polymer. This report presents the considerations required to establish the metrological traceability of ddPCR-based mass concentration estimates of human nuclear DNA. Graphical abstract The roots of metrological traceability for human nuclear DNA mass concentration results. Values for the factors in blue must be established experimentally. Values for the factors in red have been established from authoritative source materials. HHGE stands for "haploid human genome equivalent"; there are two HHGE per diploid human genome.


Assuntos
DNA/genética , Reação em Cadeia da Polimerase/métodos , Algoritmos , DNA/análise , Dosagem de Genes , Genoma Humano , Haploidia , Humanos
4.
Anal Chem ; 89(8): 4648-4654, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28347134

RESUMO

Digital polymerase chain reaction (dPCR) end point platforms directly estimate the number of DNA target copies per reaction partition, λ, where the partitions are fixed-location chambers (cdPCR) or aqueous droplets floating in oil (ddPCR). For use in the certification of target concentration in primary calibrant certified reference materials (CRMs), both λ and the partition volume, V, must be metrologically traceable to some accessible reference system, ideally, the International System of Units (SI). The fixed spatial distribution of cdPCR chambers enables real-time monitoring of PCR amplification. Analysis of the resulting reaction curves enables validation of the critical dPCR assumptions that are essential for establishing the SI traceability of λ. We know of no direct method for validating these assumptions for ddPCR platforms. The manufacturers of the cdPCR and ddPCR systems available to us do not provide traceable partition volume specifications. Our colleagues at the National Institute of Standards and Technology (NIST) have developed a reliable method for determining ddPCR droplet volume and have demonstrated that different ddPCR reagents yield droplets of somewhat different size. Thus, neither dPCR platform by itself provides metrologically traceable estimates of target concentration. We show here that evaluating split samples with both cdPCR and ddPCR platforms can transfer the λ traceability characteristics of a cdPCR assay to its ddPCR analogue, establishing fully traceable ddPCR estimates of CRM target concentration.


Assuntos
DNA/análise , Genoma Humano , Reação em Cadeia da Polimerase/métodos , DNA/metabolismo , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo
5.
Anal Chem ; 88(4): 2132-9, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26751276

RESUMO

Polymerase chain reaction (PCR) multiplexed assays perform best when the input quantity of template DNA is controlled to within about a factor of √2. To help ensure that PCR assays yield consistent results over time and place, results from methods used to determine DNA quantity need to be metrologically traceable to a common reference. Many DNA quantitation systems can be accurately calibrated with solutions of DNA in aqueous buffer. Since they do not require external calibration, end-point limiting dilution technologies, collectively termed "digital PCR (dPCR)", have been proposed as suitable for value assigning such DNA calibrants. The performance characteristics of several commercially available dPCR systems have recently been documented using plasmid, viral, or fragmented genomic DNA; dPCR performance with more complex materials, such as human genomic DNA, has been less studied. With the goal of providing a human genomic reference material traceably certified for mass concentration, we are investigating the measurement characteristics of several dPCR systems. We here report results of measurements from multiple PCR assays, on four human genomic DNAs treated with four endonuclease restriction enzymes using both chamber and droplet dPCR platforms. We conclude that dPCR does not estimate the absolute number of PCR targets in a given volume but rather the number of accessible and amplifiable targets. While enzymatic restriction of human genomic DNA increases accessibility for some assays, in well-optimized PCR assays it can reduce the number of amplifiable targets and increase assay variability relative to uncut sample.


Assuntos
DNA/análise , Genoma Humano , Reação em Cadeia da Polimerase , DNA/metabolismo , Primers do DNA/metabolismo , Enzimas de Restrição do DNA/metabolismo , Humanos
6.
Anal Chem ; 88(24): 12169-12176, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28193036

RESUMO

Enumeration-based determination of DNA copy-concentration was assessed through an international comparison among national metrology institutes (NMIs) and designated institutes (DIs). Enumeration-based quantification does not require a calibration standard thereby providing a route to "absolute quantification", which offers the potential for reliable value assignments of DNA reference materials, and International System of Units (SI) traceability to copy number 1 through accurate counting. In this study, 2 enumeration-based methods, flow cytometric (FCM) counting and the digital polymerase chain reaction (dPCR), were compared to quantify a solution of the pBR322 plasmid at a concentration of several thousand copies per microliter. In addition, 2 orthogonal chemical-analysis methods based on nucleotide quantification, isotope-dilution mass spectrometry (IDMS) and capillary electrophoresis (CE) were applied to quantify a more concentrated solution of the plasmid. Although 9 dPCR results from 8 laboratories showed some dispersion (relative standard deviation [RSD] = 11.8%), their means were closely aligned with those of the FCM-based counting method and the orthogonal chemical-analysis methods, corrected for gravimetric dilution factors. Using the means of dPCR results, the RSD of all 4 methods was 1.8%, which strongly supported the validity of the recent enumeration approaches. Despite a good overall agreement, the individual dPCR results were not sufficiently covered by the reported measurement uncertainties. These findings suggest that some laboratories may not have considered all factors contributing to the measurement uncertainty of dPCR, and further investigation of this possibility is warranted.


Assuntos
DNA/análise , Citometria de Fluxo/métodos , Plasmídeos/análise , Reação em Cadeia da Polimerase/métodos , Eletroforese Capilar , Espectrometria de Massas , Nucleotídeos/análise
7.
Anal Bioanal Chem ; 407(30): 9061-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438478

RESUMO

Polymerase chain reaction (PCR) end-point limiting dilution techniques, collectively termed "digital PCR (dPCR)", have been proposed as providing a potentially primary method for DNA quantification. We are evaluating several commercially available dPCR systems for use in certifying mass concentration in human genomic DNA reference materials. To better understand observed anomalies among results from chamber- and droplet-dPCR (cdPCR and ddPCR) systems, we have developed a graphical tool for evaluating and documenting the performance of PCR assays in real-time cdPCR systems: the ogive plot, the cumulative distribution of crossing threshold values. The ogive structure appears to embed information about early amplification events. We have successfully simulated ogives observed with different assays and reaction conditions using a four-stage amplification model parameterized by the probability of creating an intact 1) first generation "long" amplicon of indeterminate length from an original DNA target, 2) second generation defined-length amplicon from a long amplicon, and 3) defined-length amplicon from another defined-length amplicon. We are using insights from this model to optimize dPCR assay design and reaction conditions and to help validate assays proposed for use in value-assigning DNA reference materials.


Assuntos
DNA/genética , Reação em Cadeia da Polimerase/instrumentação , Adulto , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos
8.
Forensic Sci Int Genet ; 13: 195-205, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25178681

RESUMO

The PowerPlex(®) ESI 16 Fast, ESI 17 Fast, ESX 16 Fast, and ESX 17 Fast Systems represent faster cycling versions (50min or less) of the PowerPlex(®) ESI and ESX Systems released by Promega in 2009 to accommodate the ENFSI and EDNAP groups' call for new STR multiplexes for Europe. In addition to amplification of purified DNA samples, these new faster cycling systems allow for direct amplification from single-source blood and buccal samples deposited on FTA(®) and nonFTA paper as well as from SwabSolution™ extracts of buccal swabs without the need for purification and quantitation. There are no changes to the autosomal primer pair sequences in the PowerPlex(®) ESI Fast and ESX Fast Systems compared to the original multiplexes, and full concordance at all autosomal loci and amelogenin was observed with data generated previously with the original PowerPlex(®) ESI and ESX Systems. This paper describes the developmental validation study performed on these new fast systems following guidelines issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM) and those of the DNA Advisory Board (DAB). Validation data demonstrate that these systems are sensitive for detecting low levels of DNA while also being capable of generating robust profiles from the high amount of input DNA present in direct-amplification samples. These systems are also tolerant to both high concentrations of PCR inhibitors as well as to slight variations in the final concentration of master mix and primer pair present in the amplification reaction that might be encountered due to pipetting error. The results of this validation study demonstrate that these systems may be used on multiple thermal cyclers and capillary electrophoresis platforms.


Assuntos
Impressões Digitais de DNA , Repetições de Microssatélites , Reação em Cadeia da Polimerase Multiplex/instrumentação , Animais , Degradação Necrótica do DNA , Eletroforese Capilar , Humanos , Masculino , Reprodutibilidade dos Testes , Especificidade da Espécie , Manejo de Espécimes/métodos
11.
J Mol Diagn ; 15(2): 177-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23321018

RESUMO

Human cytomegalovirus (CMV), classified as human herpesvirus 5, is ubiquitous in human populations. Infection generally causes little illness in healthy individuals, but can cause life-threatening disease in those who are immunocompromised or in newborns through complications arising from congenital CMV infection. An important aspect in diagnosis and treatment is to track circulating viral load with molecular methods, particularly with quantitative PCR. Standardization is vital, because of interlaboratory variability (due in part to the variety of assays and calibrants). Toward that end, the U.S. National Institute of Standards and Technology produced a Standard Reference Material 2366 appropriate for establishing metrological traceability of assay calibrants. This standard is composed of CMV DNA (Towne(Δ147) bacterial artificial chromosome DNA). Regions of the CMV DNA that are commonly used as targets for PCR assays were sequenced. Digital PCR was used to quantify the DNA, with concentration expressed as copies per microliter. The materials were tested for homogeneity and stability. An interlaboratory study was conducted by Quality Control for Molecular Diagnostics (Glasgow, UK), in which one component of SRM 2366 was included for analysis by participants in a CMV external quality assessment and proficiency testing program.


Assuntos
Infecções por Citomegalovirus/diagnóstico , Citomegalovirus/genética , DNA Viral/genética , Padrões de Referência , Carga Viral/normas , Ordem dos Genes , Genoma Viral , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA
12.
Forensic Sci Int Genet ; 7(1): 129-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22921483

RESUMO

As short tandem repeat markers remain the foundation of human identification throughout the world, new STR multiplexes require rigorous testing to ensure the assays are sufficiently robust and reliable for genotyping purposes. The PowerPlex(®) 18D System was created for the direct amplification of buccal and blood samples from FTA(®) storage cards and reliably accommodates other sample materials. The PowerPlex(®) 18D System allows simultaneous amplification of the 13 CODIS loci and amelogenin along with four additional loci: Penta E, Penta D, D2S1338, and D19S433. To demonstrate suitability for human identification testing, the PowerPlex(®) 18D System was tested for sensitivity, concordance, inhibitor tolerance, and performance with thermal cycling and reaction condition variation following SWGDAM developmental validation guidelines. Given these results, PowerPlex(®) 18D System can confidently be used for forensic and human identification testing.


Assuntos
Antropologia Forense/métodos , Repetições de Microssatélites , Eletroforese Capilar , Frequência do Gene , Humanos , Padrões de Referência
13.
Int J Cancer ; 132(11): 2510-9, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23136038

RESUMO

Continuous human cell lines have been used extensively as models for biomedical research. In working with these cell lines, researchers are often unaware of the risk of cross-contamination and other causes of misidentification. To reduce this risk, there is a pressing need to authenticate cell lines, comparing the sample handled in the laboratory to a previously tested sample. The American Type Culture Collection Standards Development Organization Workgroup ASN-0002 has developed a Standard for human cell line authentication, recommending short tandem repeat (STR) profiling for authentication of human cell lines. However, there are known limitations to the technique when applied to cultured samples, including possible genetic drift with passage. In our study, a dataset of 2,279 STR profiles from four cell banks was used to assess the effectiveness of the match criteria recommended within the Standard. Of these 2,279 STR profiles, 1,157 were grouped into sets of related cell lines-duplicate holdings, legitimately related samples or misidentified cell lines. Eight core STR loci plus amelogenin were used to unequivocally authenticate 98% of these related sets. Two simple match algorithms each clearly discriminated between related and unrelated samples, with separation between related samples at ≥80% match and unrelated samples at <50% match. A small degree of overlap was noted at 50-79% match, mostly from cell lines known to display variable STR profiles. These match criteria are recommended as a simple and effective way to interpret results from STR profiling of human cell lines.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Técnicas de Genotipagem/normas , Repetições de Microssatélites/genética , Linhagem Celular , Humanos , Reação em Cadeia da Polimerase
14.
Forensic Sci Int Genet ; 5(4): 329-32, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20932816

RESUMO

DNA sequence variation is known to exist in and around the repeat region of short tandem repeat (STR) loci used in human identity testing. While the vast majority of STR alleles measured in forensic DNA laboratories worldwide type as "normal" alleles compared with STR kit allelic ladders, a number of variant alleles have been reported. In addition, a sequence difference at a polymerase chain reaction (PCR) primer binding site in the DNA template can cause allele drop-out (i.e., a "null" or "silent" allele) with one set of primers and not with another. Our group at the National Institute of Standards and Technology (NIST) has been sequencing variant and null alleles supplied by forensic labs and cataloging this information on the NIST STRBase website for the past decade. The PCR primer sequences and strategy used for our STR allele sequencing work involving 23 autosomal STRs and 17 Y-chromosome STRs are described along with the results from 111 variant and 17 null alleles.


Assuntos
Alelos , Bases de Dados de Ácidos Nucleicos , Repetições de Microssatélites , Análise de Sequência , Cromossomos Humanos Y , Primers do DNA , Genética Forense , Humanos , Masculino , Reação em Cadeia da Polimerase
15.
Forensic Sci Int Genet ; 5(4): 269-75, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20457109

RESUMO

The PowerPlex(®) ESX 17 and ESI 17 Systems for short tandem repeat (STR) amplification were developed by the Promega Corporation to meet the European Network of Forensic Science Institutes (ENFSI) and the European DNA Profiling (EDNAP) Group recommendations for increasing the number of STR loci included in the European Standard Set (ESS). The PowerPlex ESX 17 and ESI 17 Systems utilize different PCR primer combinations to co-amplify the following 17 loci: D1S1656, D2S441, D2S1338, D3S1358, D8S1179, D10S1248, D12S391, D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, TH01, vWA, SE33, and the sex-typing locus amelogenin. A total of 1443 U.S. population samples were evaluated with pre-commercialization versions of both kits. Stutter and heterozygote peak height ratios have been used to characterize kit performance. Typing results have been used to estimate the match probabilities provided by the chosen loci as well as in concordance studies. Full concordance between the typing results for the two kits was observed in 99.994% (49,055 out of 49,062) STR allele calls compared. All genotyping discrepancies were confirmed by DNA sequence analysis. As a result of these comparisons, a second forward primer for the D22S1045 locus has been added to the PowerPlex ESX 17 System to address a primer binding site mutation and the D1S1656 locus reverse primer in the PowerPlex ESI 17 System was modified to eliminate an amplification-efficiency reducing primer dimer.


Assuntos
Impressões Digitais de DNA/instrumentação , Bases de Dados de Ácidos Nucleicos , Reação em Cadeia da Polimerase , Sequências de Repetição em Tandem , Primers do DNA , Genética Populacional , Genótipo , Humanos , Mutação , Grupos Raciais/genética , Análise de Sequência de DNA
16.
In Vitro Cell Dev Biol Anim ; 46(9): 727-32, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20614197

RESUMO

Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.


Assuntos
Biologia Celular/normas , Perfilação da Expressão Gênica/métodos , Repetições de Microssatélites/genética , Manejo de Espécimes/métodos , Bancos de Tecidos/normas , Linhagem Celular , Humanos , Células-Tronco , Estados Unidos
17.
Anal Bioanal Chem ; 394(4): 1183-92, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19377837

RESUMO

Modern highly multiplexed short tandem repeat (STR) assays used by the forensic human-identity community require tight control of the initial amount of sample DNA amplified in the polymerase chain reaction (PCR) process. This, in turn, requires the ability to reproducibly measure the concentration of human DNA, [DNA], in a sample extract. Quantitative PCR (qPCR) techniques can determine the number of intact stretches of DNA of specified nucleotide sequence in an extremely small sample; however, these assays must be calibrated with DNA extracts of well-characterized and stable composition. By 2004, studies coordinated by or reported to the National Institute of Standards and Technology (NIST) indicated that a well-characterized, stable human DNA quantitation certified reference material (CRM) could help the forensic community reduce within- and among-laboratory quantitation variability. To ensure that the stability of such a quantitation standard can be monitored and that, if and when required, equivalent replacement materials can be prepared, a measurement of some stable quantity directly related to [DNA] is required. Using a long-established conventional relationship linking optical density (properly designated as decadic attenuance) at 260 nm with [DNA] in aqueous solution, NIST Standard Reference Material (SRM) 2372 Human DNA Quantitation Standard was issued in October 2007. This SRM consists of three quite different DNA extracts: a single-source male, a multiple-source female, and a mixture of male and female sources. All three SRM components have very similar optical densities, and thus very similar conventional [DNA]. The materials perform very similarly in several widely used gender-neutral assays, demonstrating that the combination of appropriate preparation methods and metrologically sound spectrophotometric measurements enables the preparation and certification of quantitation [DNA] standards that are both maintainable and of practical utility.


Assuntos
Certificação , DNA/análise , DNA/normas , Laboratórios/normas , Reação em Cadeia da Polimerase/normas , Calibragem , Humanos , Reação em Cadeia da Polimerase/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta/métodos , Espectrofotometria Ultravioleta/normas
18.
Forensic Sci Int Genet ; 2(3): e31-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19083812

RESUMO

We have examined 389 father/son sample pairs from U.S. Caucasians, African Americans, Hispanics and Asians using the 17 Y-STR loci in the Yfilertrade mark kit and observed a total of 24 differences between father and son. Thirteen mutations resulted in the gain of a repeat in the son and 11 resulted in a loss of a repeat. All samples resulted in single repeat mutations except one sample which contained a two repeat loss at Y-GATA-H4. Furthermore, two different sample pairs were found to have two mutations. An African American sample pair had a mutation at DYS458 and a second at DYS635 and an Asian sample pair had mutations at DYS439 and Y-GATA-H4.


Assuntos
Cromossomos Humanos Y , Pai , Repetições de Microssatélites , Mutação , Núcleo Familiar , Negro ou Afro-Americano/genética , Alelos , Povo Asiático/genética , Criança , Impressões Digitais de DNA/métodos , Deleção de Genes , Duplicação Gênica , Genética Populacional , Haplótipos , Hispânico ou Latino/genética , Humanos , Masculino , Reação em Cadeia da Polimerase , Estados Unidos , População Branca/genética
19.
J Forensic Sci ; 53(1): 73-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18005005

RESUMO

An additional 20 novel mini-short tandem repeat (miniSTR) loci have been developed and characterized beyond the six previously developed by our laboratory for a total of 26 non-CODIS miniSTR markers. These new markers produce short PCR products in the target range of 50-150 base pairs (bp) by moving the primer sequences as close as possible-often directly next to the identified repeat region. These candidate loci were initially screened based on their small amplicon sizes and locations on chromosomes currently unoccupied by the 13 CODIS STR loci or at least 50 Mb away from them on the same chromosome. They were sequenced and evaluated across more than 600 samples, and their population statistics were determined. The heterozygosities of the new loci were compared with those of the 13 CODIS loci and all were found to be comparable. Only five of the new loci had lower values than the CODIS loci; however, all of these were much smaller in size. This data suggests that these 26 miniSTR loci will serve as useful complements to the CODIS loci to aid in the forensic analysis of degraded DNA, as well as missing persons work and parentage testing with limited next-of-kin reference samples.


Assuntos
Degradação Necrótica do DNA , Impressões Digitais de DNA/métodos , Repetições de Microssatélites , Marcadores Genéticos , Genética Populacional , Genótipo , Heterozigoto , Humanos , Reação em Cadeia da Polimerase , Grupos Raciais , Análise de Sequência de DNA
20.
J Forensic Sci ; 52(4): 870-3, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17553078

RESUMO

The AmpFlSTR MiniFiler polymerase chain reaction amplification kit developed by Applied Biosystems enables size reduction on eight of the larger STR loci amplified in the Identifiler kit, which will aid recovery of information from highly degraded DNA samples. The MiniFiler Kit amplifies CSF1PO, FGA, D2S1338, D7S820, D13S317, D16S539, D18S51, and D21S11 as well as the sex-typing locus amelogenin. A total of 1308 samples were evaluated with both the MiniFiler and Identifiler STR kits: 449 African American, 445 Caucasian, 207 Hispanic, and 207 Asian individuals. Full concordance between Identifiler and MiniFiler Kits was observed in 99.7% (10,437 out of 10,464) STR allele calls compared. The 27 differences seen are listed in Table 1 and encompass the loci D13S317 (n = 14) and D16S539 (n = 10) as well as D18S51 (n = 1), D7S820 (n = 1), and CSF1PO (n = 1). Genotyping discrepancies between the Identifiler and MiniFiler kits were confirmed by reamplification of the samples and further testing using the PowerPlex 16 kit in many cases. DNA sequence analysis was also performed in order to understand the nature of the genetic variations causing the allele dropout or apparent repeat unit shift.


Assuntos
Impressões Digitais de DNA/métodos , DNA/genética , Genética Forense/métodos , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase/métodos , DNA/química , Impressões Digitais de DNA/normas , Genética Forense/normas , Humanos , Masculino , Reação em Cadeia da Polimerase/normas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...