Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 19(7): 2969-2978, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29757619

RESUMO

2,3-Dialdehyde cellulose (DAC) of a high degree of oxidation (92% relative to AGU units) prepared by oxidation of microcrystalline cellulose with sodium periodate (48 °C, 19 h) is soluble in hot water. Solution casting, slow air drying, hot pressing, and reinforcement by cellulose nanocrystals afforded films (∼100 µm thickness) that feature intriguing properties: they have very smooth surfaces (SEM), are highly flexible, and have good light transmittance for both the visible and near-infrared range (89-91%), high tensile strength (81-122 MPa), and modulus of elasticity (3.4-4.0 GPa) depending on hydration state and respective water content. The extraordinarily low oxygen permeation of <0.005 cm3 µm m-2 day-1 kPa-1 (50% RH) and <0.03 cm3 µm m-2 day-1 kPa-1 (80% RH) can be regarded as a particularly interesting feature of DAC films. The unusually high initial contact angle of about 67° revealed a rather low hydrophilicity compared to other oxidatively modified or unmodified cellulosic materials which is most likely the result of inter- and intramolecular hemiacetal and hemialdal formation during drying and pressing.


Assuntos
Celulose/análogos & derivados , Membranas Artificiais , Celulose/química , Celulose/efeitos da radiação , Elasticidade , Temperatura Alta , Luz , Nanopartículas/química , Oxigênio/química
2.
J Agric Food Chem ; 61(38): 9004-14, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23967874

RESUMO

Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16-30 µg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4-160.5 mg/g of educt) and polysaccharides (140 °C: 5.52-16.03 mg/g of educt).


Assuntos
Amônia/química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/toxicidade , Monossacarídeos/química , Polissacarídeos/química , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento , Monossacarídeos/toxicidade , Oxirredução , Polissacarídeos/toxicidade
3.
J Agric Food Chem ; 61(38): 9015-26, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23967905

RESUMO

Ammoxidized technical lignins are valuable soil-improving materials that share many similarities with native terrestrial humic substances. In contrast to lignins, the chemical fate of carbohydrates as typical minor constituents of technical lignins during the ammoxidation processes has not been thoroughly investigated. Recently, we reported the formation of N-heterocyclic, ecotoxic compounds (OECD test 201) from both monosaccharides (D-glucose, D-xylose) and polysaccharides (cellulose, xylan) under ammoxidation conditions and showed that monosaccharides are a source more critical than polysaccharides in this respect. GC/MS-derivatization analysis of the crude product mixtures revealed that ammoxidation of carbohydrates which resembles the conditions encountered in nonenzymatical browning of foodstuff affords also a multitude of nonheterocyclic nitrogenous compounds such as aminosugars, glycosylamines, ammonium salts of aldonic, deoxyaldonic, oxalic and carbaminic acids, urea, acetamide, α-hydroxyamides, and even minor amounts of α-amino acids. D-glucose and D-xylose afforded largely similar product patterns which differed from each other only for those products that were formed under preservation of the chain integrity and stereoconfiguration of the respective monosaccharide. The kinetics and reaction pathways involved in the formation of the different classes of nitrogenous compounds under ammoxidation conditions are discussed.


Assuntos
Amônia/química , Lignina/química , Monossacarídeos/química , Compostos de Nitrogênio/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...