Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Mol Neurosci ; 15: 940484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311026

RESUMO

The zebrafish is increasingly recognized as a model organism for translational research into human neuropathology. The zebrafish brain exhibits fundamental resemblance with human neuroanatomical and neurochemical pathways, and hallmarks of human brain pathology such as protein aggregation, neuronal degeneration and activation of glial cells, for example, can be modeled and recapitulated in the fish central nervous system. Genetic manipulation, imaging, and drug screening are areas where zebrafish excel with the ease of introducing mutations and transgenes, the expression of fluorescent markers that can be detected in vivo in the transparent larval stages overtime, and simple treatment of large numbers of fish larvae at once followed by automated screening and imaging. In this review, we summarize how zebrafish have successfully been employed to model human neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. We discuss advantages and disadvantages of choosing zebrafish as a model for these neurodegenerative conditions.

3.
Nat Neurosci ; 25(4): 415-420, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165460

RESUMO

Oligodendrocytes that survive demyelination can remyelinate, including in multiple sclerosis (MS), but how they do so is unclear. In this study, using zebrafish, we found that surviving oligodendrocytes make few new sheaths and frequently mistarget new myelin to neuronal cell bodies, a pathology we also found in MS. In contrast, oligodendrocytes generated after demyelination make abundant and correctly targeted sheaths, indicating that they likely also have a better regenerative potential in MS.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Doenças Desmielinizantes/patologia , Esclerose Múltipla/patologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Regeneração , Peixe-Zebra
4.
J Cell Biol ; 219(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32364583

RESUMO

Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl- (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon-myelin interface. Cell-type-specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity-related solute homeostasis at the axon-myelin interface, and the integrity of myelinated axons.


Assuntos
Axônios/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Células de Schwann/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Proteínas de Peixe-Zebra/genética , Potenciais de Ação , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Bloqueadores dos Canais de Sódio/toxicidade , Membro 2 da Família 12 de Carreador de Soluto/deficiência , Tetrodotoxina/toxicidade , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência
5.
Dev Cell ; 51(6): 730-744.e6, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31761670

RESUMO

Selection of the correct targets for myelination and regulation of myelin sheath growth are essential for central nervous system (CNS) formation and function. Through a genetic screen in zebrafish and complementary analyses in mice, we find that loss of oligodendrocyte Neurofascin leads to mistargeting of myelin to cell bodies, without affecting targeting to axons. In addition, loss of Neurofascin reduces CNS myelination by impairing myelin sheath growth. Time-lapse imaging reveals that the distinct myelinating processes of individual oligodendrocytes can engage in target selection and sheath growth at the same time and that Neurofascin concomitantly regulates targeting and growth. Disruption to Caspr, the neuronal binding partner of oligodendrocyte Neurofascin, also impairs myelin sheath growth, likely reflecting its association in an adhesion complex at the axon-glial interface with Neurofascin. Caspr does not, however, affect myelin targeting, further indicating that Neurofascin independently regulates distinct aspects of CNS myelination by individual oligodendrocytes in vivo.


Assuntos
Sistema Nervoso Central/citologia , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/citologia , Animais , Axônios/metabolismo , Corpo Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Peixe-Zebra/metabolismo
6.
Methods Mol Biol ; 1936: 185-209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820900

RESUMO

Zebrafish are now well established as the preeminent vertebrate model with which to carry out gene discovery/forward genetic screens to identify the molecular genetic basis of biological processes. Gene discovery screens in zebrafish have already provided novel insight into mechanisms of glial cell development and function. The vast majority of genetic screens in zebrafish are based around a three generation screen that starts with the random induction of mutations in adult males using the chemical mutagen ENU. Here we outline the methods that underlie this type of screen, detailing each step, from ENU mutagenesis, through the breeding schemes required to recover homozygous mutant animals in subsequent generations, the screening procedure itself, with a focus on the analysis of myelinating glia, and the subsequent confirmation of mutant phenotypes.


Assuntos
Etilnitrosoureia/efeitos adversos , Testes Genéticos/métodos , Bainha de Mielina/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Cruzamento , Feminino , Homozigoto , Masculino , Modelos Animais , Mutação , Fenótipo
7.
Curr Biol ; 28(8): 1296-1305.e5, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29628374

RESUMO

The correct targeting of myelin is essential for nervous system formation and function. Oligodendrocytes in the CNS myelinate some axons, but not others, and do not myelinate structures including cell bodies and dendrites [1]. Recent studies indicate that extrinsic signals, such as neuronal activity [2, 3] and cell adhesion molecules [4], can bias myelination toward some axons and away from cell bodies and dendrites, indicating that, in vivo, neuronal and axonal cues regulate myelin targeting. In vitro, however, oligodendrocytes have an intrinsic propensity to myelinate [5-7] and can promiscuously wrap inert synthetic structures resembling neuronal processes [8, 9] or cell bodies [4]. A current therapeutic goal for the treatment of demyelinating diseases is to greatly promote oligodendrogenesis [10-13]; thus, it is important to test how accurately extrinsic signals regulate the oligodendrocyte's intrinsic program of myelination in vivo. Here, we test the hypothesis that neurons regulate myelination with sufficient stringency to always ensure correct targeting. Surprisingly, however, we find that myelin targeting in vivo is not very stringent and that mistargeting occurs readily when oligodendrocyte and myelin supply exceed axonal demand. We find that myelin is mistargeted to neuronal cell bodies in zebrafish mutants with fewer axons and independently in drug-treated zebrafish with increased oligodendrogenesis. Additionally, by increasing myelin production of oligodendrocytes in zebrafish and mice, we find that excess myelin is also inappropriately targeted to cell bodies. Our results suggest that balancing oligodendrocyte-intrinsic programs of myelin supply with axonal demand is essential for correct myelin targeting in vivo and highlight potential liabilities of strongly promoting oligodendrogenesis.


Assuntos
Corpo Celular/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Axônios/fisiologia , Feminino , Masculino , Camundongos , Bainha de Mielina/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Neurônios/fisiologia , Oligodendroglia/metabolismo , Organogênese/fisiologia , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/metabolismo
8.
Neuroscientist ; 24(1): 7-21, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28397586

RESUMO

Approximately half of the human brain consists of myelinated axons. Central nervous system (CNS) myelin is made by oligodendrocytes and is essential for nervous system formation, health, and function. Once thought simply as a static insulator that facilitated rapid impulse conduction, myelin is now known to be made and remodeled in to adult life. Oligodendrocytes have a remarkable capacity to differentiate by default, but many aspects of their development can be influenced by axons. However, how axons and oligodendrocytes interact and cooperate to regulate myelination in the CNS remains unclear. Here, we review recent advances in our understanding of how such interactions generate the complexity of myelination known to exist in vivo. We highlight intriguing results that indicate that the cross-sectional size of an axon alone may regulate myelination to a surprising degree. We also review new studies, which have highlighted diversity in the myelination of axons of different neuronal subtypes and circuits, and structure-function relationships, which suggest that myelinated axons can be exquisitely fine-tuned to mediate precise conduction needs. We also discuss recent advances in our understanding of how neuronal activity regulates CNS myelination, and aim to provide an integrated overview of how axon-oligodendrocyte interactions sculpt neuronal circuit structure and function.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/fisiologia , Bainha de Mielina/fisiologia , Animais , Humanos
9.
Nat Genet ; 46(12): 1283-1292, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344692

RESUMO

Centrioles are essential for ciliogenesis. However, mutations in centriole biogenesis genes have been reported in primary microcephaly and Seckel syndrome, disorders without the hallmark clinical features of ciliopathies. Here we identify mutations in the genes encoding PLK4 kinase, a master regulator of centriole duplication, and its substrate TUBGCP6 in individuals with microcephalic primordial dwarfism and additional congenital anomalies, including retinopathy, thereby extending the human phenotypic spectrum associated with centriole dysfunction. Furthermore, we establish that different levels of impaired PLK4 activity result in growth and cilia phenotypes, providing a mechanism by which microcephaly disorders can occur with or without ciliopathic features.


Assuntos
Transtornos do Crescimento/genética , Microcefalia/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Degeneração Retiniana/genética , Adolescente , Adulto , Animais , Centríolos/ultraestrutura , Criança , Pré-Escolar , Saúde da Família , Feminino , Fibroblastos/metabolismo , Genótipo , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Repetições de Microssatélites , Proteínas Associadas aos Microtúbulos/genética , Mitose , Paquistão , Linhagem , Fenótipo , Adulto Jovem , Peixe-Zebra
10.
Genes Dev ; 25(19): 2011-24, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21979914

RESUMO

The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.


Assuntos
Nanismo/genética , Nanismo/fisiopatologia , Crescimento e Desenvolvimento/genética , Animais , Tamanho Corporal , Proliferação de Células , Humanos , Mutação
11.
Development ; 138(13): 2705-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21613323

RESUMO

Fibroblast growth factor (FGF)-dependent epithelial-mesenchymal transitions and cell migration contribute to the establishment of germ layers in vertebrates and other animals, but a comprehensive demonstration of the cellular activities that FGF controls to mediate these events has not been provided for any system. The establishment of the Drosophila mesoderm layer from an epithelial primordium involves a transition to a mesenchymal state and the dispersal of cells away from the site of internalisation in a FGF-dependent fashion. We show here that FGF plays multiple roles at successive stages of mesoderm morphogenesis in Drosophila. It is first required for the mesoderm primordium to lose its epithelial polarity. An intimate, FGF-dependent contact is established and maintained between the germ layers through mesoderm cell protrusions. These protrusions extend deep into the underlying ectoderm epithelium and are associated with high levels of E-cadherin at the germ layer interface. Finally, FGF directs distinct hitherto unrecognised and partially redundant protrusive behaviours during later mesoderm spreading. Cells first move radially towards the ectoderm, and then switch to a dorsally directed movement across its surface. We show that both movements are important for layer formation and present evidence suggesting that they are controlled by genetically distinct mechanisms.


Assuntos
Drosophila/citologia , Drosophila/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Transdução de Sinais/fisiologia , Animais , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Ectoderma/citologia , Ectoderma/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Gastrulação/genética , Gastrulação/fisiologia , Imuno-Histoquímica , Transdução de Sinais/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
12.
Nat Genet ; 43(4): 350-5, 2011 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-21358633

RESUMO

Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.


Assuntos
Nanismo/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Complexo de Reconhecimento de Origem/genética , Adolescente , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Criança , Pré-Escolar , Microtia Congênita , Consanguinidade , DNA/genética , Orelha/anormalidades , Feminino , Estudo de Associação Genômica Ampla , Transtornos do Crescimento/genética , Humanos , Lactente , Masculino , Micrognatismo/genética , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/deficiência , Patela/anormalidades , Linhagem , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Fase S/genética , Arábia Saudita , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
13.
Development ; 136(14): 2393-402, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19515694

RESUMO

Thisbe (Ths) and Pyramus (Pyr), two closely related Drosophila homologues of the vertebrate fibroblast growth factor (FGF) 8/17/18 subfamily, are ligands for the FGF receptor Heartless (Htl). Both ligands are required for mesoderm development, but their differential expression patterns suggest distinct functions during development. We generated single mutants and found that ths or pyr loss-of-function mutations are semi-lethal and mutants exhibit much weaker phenotypes as compared with loss of both ligands or htl. Thus, pyr and ths display partial redundancy in their requirement in embryogenesis and viability. Nevertheless, we find that pyr and ths single mutants display defects in gastrulation and mesoderm differentiation. We show that localised expression of pyr is required for normal cell protrusions and high levels of MAPK activation in migrating mesoderm cells. The results support the model that Pyr acts as an instructive cue for mesoderm migration during gastrulation. Consistent with this function, mutations in pyr affect the normal segmental number of cardioblasts. Furthermore, Pyr is essential for the specification of even-skipped-positive mesodermal precursors and Pyr and Ths are both required for the specification of a subset of somatic muscles. The results demonstrate both independent and overlapping functions of two FGF8 homologues in mesoderm morphogenesis and differentiation. We propose that the integration of Pyr and Ths function is required for robustness of Htl-dependent mesoderm spreading and differentiation, but that the functions of Pyr have become more specific, possibly representing an early stage of functional divergence after gene duplication of a common ancestor.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Movimento Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fator 8 de Crescimento de Fibroblasto/genética , Gastrulação/genética , Gastrulação/fisiologia , Genes de Insetos , Ligantes , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Mutação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...