Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 16(7): 4505-4520, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422041

RESUMO

We present the first use of curvilinear vibrational coordinates, specifically polyspherical coordinates, in combination with vibrational coupled cluster theory. The polyspherical coordinates are used in the context of both the adaptive density-guided approach to potential energy surface construction and in the subsequent vibrational coupled cluster calculations of anharmonic vibrational states. Results obtained based on the polyspherical coordinate parametrization are compared to results obtained with the use of rectilinear vibrational coordinates, namely, normal coordinates and hybrid optimized and localized coordinates for the formaldehyde molecule. This comparison is carried out with the full vibrational configuration interaction model, using the respective fully coupled potential energy surfaces and untruncated kinetic energy operators. The polyspherical coordinates are shown to facilitate an acceleration of convergence for truncated methods when compared to the use of normal coordinates. We furthermore report on calculations on the hydrogen peroxide molecule in the polyspherical coordinate parametrization. The polyspherical vibrational coordinates are shown to perform very well, even for truncated methods, especially when considering the difficulty that rectilinear vibrational coordinates can exhibit in treating complicated internal molecular motion.

2.
J Phys Chem A ; 124(13): 2616-2627, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32125155

RESUMO

We employ and combine a number of recent developments in vibrational structure methods to push their current size limitations toward molecules with tens of modes and showcase their availability for the maleimide molecule. In particular, we assess the use of different rectilinear vibrational coordinates, namely, normal coordinates, hybrid optimized and localized coordinates, and flexible adaptation of local coordinates of nuclei coordinates. These different coordinate parameterizations are employed in conjunction with the adaptive density-guided approach to generate potential energy surfaces (PESs). A screening procedure is furthermore introduced, which provides estimates of the importance of individual terms in the PES, resulting in significant reductions in the computational cost of the PES construction. We find that all three sets of coordinates provide approximately the same level of accuracy in vibrational structure calculations and report fundamental excitation energies with a mean absolute deviation of less than 12 cm-1 when compared to experimental data. We expect that similar accuracy in vibrational structure calculations can be achieved for molecules of larger size using the proposed procedures.

3.
J Chem Phys ; 153(6): 064105, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287466

RESUMO

We present a new iterative scheme for potential energy surface (PES) construction, which relies on both physical information and information obtained through statistical analysis. The adaptive density guided approach (ADGA) is combined with a machine learning technique, namely, the Gaussian process regression (GPR), in order to obtain the iterative GPR-ADGA for PES construction. The ADGA provides an average density of vibrational states as a physically motivated importance-weighting and an algorithm for choosing points for electronic structure computations employing this information. The GPR provides an approximation to the full PES given a set of data points, while the statistical variance associated with the GPR predictions is used to select the most important among the points suggested by the ADGA. The combination of these two methods, resulting in the GPR-ADGA, can thereby iteratively determine the PES. Our implementation, additionally, allows for incorporating derivative information in the GPR. The iterative process commences from an initial Hessian and does not require any presampling of configurations prior to the PES construction. We assess the performance on the basis of a test set of nine small molecules and fundamental frequencies computed at the full vibrational configuration interaction level. The GPR-ADGA, with appropriate settings, is shown to provide fundamental excitation frequencies of an root mean square deviation (RMSD) below 2 cm-1, when compared to those obtained based on a PES constructed with the standard ADGA. This can be achieved with substantial savings of 65%-90% in the number of single point calculations.

4.
J Chem Phys ; 152(19): 194105, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687258

RESUMO

We present a combination of the recently developed double incremental expansion of potential energy surfaces with the well-established adaptive density-guided approach to grid construction. This unique methodology is based on the use of an incremental expansion for potential energy surfaces, known as n-mode expansion; an incremental many-body representation of the electronic energy; and an efficient vibrational density-guided approach to automated determination of grid dimensions and granularity. The reliability of the method is validated calculating potential energy surfaces and obtaining fundamental excitation energies for three moderate-size chain-like molecular systems. The use of our methodology leads to considerable computational savings for potential energy surface construction compared to standard approaches while maintaining a high level of accuracy in the resulting potential energy surfaces. Additional investigations indicate that our method can be applied to covalently bound and strongly interacting molecular systems, even though these cases are known to be very unfavorable for fragmentation schemes. We therefore conclude that the presented methodology is a robust and flexible approach to potential energy surface construction, which introduces considerable computational savings without compromising the accuracy of vibrational spectra calculations.

5.
J Chem Phys ; 148(6): 064113, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29448776

RESUMO

We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.

6.
J Phys Chem A ; 119(44): 11007-21, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26447859

RESUMO

We present a new type of vibrational coordinates denoted hybrid optimized and localized coordinates (HOLCs) aiming at a good set of rectilinear vibrational coordinates supporting fast convergence in vibrational stucture calculations. The HOLCs are obtained as a compromise between the recently promoted optimized coordinates (OCs) and localized coordinates (LCs). The three sets of coordinates are generally different from each other and differ from standard normal coordinates (NCs) as well. In determining the HOLCs, we optimize the vibrational self-consistent field (VSCF) energy with respect to orthogonal transformation of the coordinates, which is similar to determining OCs but for HOLCs we additionally introduce a penalty for delocalization, by using a measure of localization similar to that employed in determining LCs. The same theory and implementation covers OCs, LCs, and HOLCs. It is shown that varying one penalty parameter allows for connecting OCs and LCs. The HOLCs are compared to NCs, OCs, and LCs in their nature and performance as basis for vibrational coupled cluster (VCC) response calculations of vibrational anharmonic energies for a small set of simple systems comprising water, formaldehyde, and ethylene. It is found that surprisingly good results can be obtained with HOLCs by using potential energy surfaces as simple as quadratic Taylor expansions. Quite similar coordinates are found for the already established OCs but obtaining these OCs requires much more elaborate and expensive potential energy surfaces and localization is generally not guaranteed. The ability to compute HOLCs for somewhat larger systems is demonstrated for coumarin and the alanine quadramer. The good agreement between HOLCs and OCs, together with the much easier applicability of HOLCs for larger systems, suggests that HOLCs may be a pragmatically very interesting option for anharmonic calculations on medium to large molecular systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...