Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 50(Pt 5): 1533-1540, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021736

RESUMO

The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of ß-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in ß-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of ß-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data. If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28993326

RESUMO

Artemisinin resistance constitutes a major threat to the continued success of control programs for malaria, particularly in light of developing resistance to partner drugs. Improving our understanding of how artemisinin-based drugs act and how resistance manifests is essential for the optimization of dosing regimens and the development of strategies to prolong the life span of current first-line treatment options. Recent short-drug-pulse in vitro experiments have shown that the parasite killing rate depends not only on drug concentration but also the exposure time, challenging the standard pharmacokinetic-pharmacodynamic (PK-PD) paradigm in which the killing rate depends only on drug concentration. Here, we introduce a dynamic stress model of parasite killing and show through application to 3D7 laboratory strain viability data that the inclusion of a time-dependent parasite stress response dramatically improves the model's explanatory power compared to that of a traditional PK-PD model. Our model demonstrates that the previously reported hypersensitivity of early-ring-stage parasites of the 3D7 strain to dihydroartemisinin compared to other parasite stages is due primarily to a faster development of stress rather than a higher maximum achievable killing rate. We also perform in vivo simulations using the dynamic stress model and demonstrate that the complex temporal features of artemisinin action observed in vitro have a significant impact on predictions for in vivo parasite clearance. Given the important role that PK-PD models play in the design of clinical trials for the evaluation of alternative drug dosing regimens, our novel model will contribute to the further development and improvement of antimalarial therapies.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Resistência a Medicamentos/fisiologia , Humanos , Modelos Biológicos
3.
J Theor Biol ; 430: 117-127, 2017 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-28728995

RESUMO

Falciparum malaria is a major parasitic disease causing widespread morbidity and mortality globally. Artemisinin derivatives-the most effective and widely-used antimalarials that have helped reduce the burden of malaria by 60% in some areas over the past decade-have recently been found to induce growth retardation of blood-stage Plasmodium falciparum when applied at clinically relevant concentrations. To date, no model has been designed to quantify the growth retardation effect and to predict the influence of this property on in vivo parasite killing. Here we introduce a mechanistic model of parasite growth from the ring to trophozoite stage of the parasite's life cycle, and by modelling the level of staining with an RNA-binding dye, we demonstrate that the model is able to reproduce fluorescence distribution data from in vitro experiments using the laboratory 3D7 strain. We quantify the dependence of growth retardation on drug concentration and identify the concentration threshold above which growth retardation is evident. We estimate that the parasite life cycle is prolonged by up to 10 hours. We illustrate that even such a relatively short delay in growth may significantly influence in vivo parasite dynamics, demonstrating the importance of considering growth retardation in the design of optimal artemisinin-based dosing regimens.


Assuntos
Artemisininas/farmacologia , Malária Falciparum/parasitologia , Parasitos/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Parasitos/crescimento & desenvolvimento , Plasmodium falciparum
4.
Antimicrob Agents Chemother ; 60(8): 4501-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27161632

RESUMO

Fully synthetic endoperoxide antimalarials, namely, OZ277 (RBx11160; also known as arterolane) and OZ439 (artefenomel), have been approved for marketing or are currently in clinical development. We undertook an analysis of the kinetics of the in vitro responses of Plasmodium falciparum to the new ozonide antimalarials. For these studies we used a K13 mutant (artemisinin resistant) isolate from a region in Cambodia and a genetically matched (artemisinin sensitive) K13 revertant. We used a pulsed-exposure assay format to interrogate the time dependence of the response. Because the ozonides have physicochemical properties different from those of the artemisinins, assay optimization was required to ensure that the drugs were completely removed following the pulsed exposure. Like that of artemisinins, ozonide activity requires active hemoglobin degradation. Short pulses of the ozonides were less effective than short pulses of dihydroartemisinin; however, when early-ring-stage parasites were exposed to drugs for periods relevant to their in vivo exposure, the ozonide antimalarials were markedly more effective.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Compostos Heterocíclicos/farmacologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 113(17): 4800-5, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071094

RESUMO

The sexual blood stage of the human malaria parasite Plasmodium falciparum undergoes remarkable biophysical changes as it prepares for transmission to mosquitoes. During maturation, midstage gametocytes show low deformability and sequester in the bone marrow and spleen cords, thus avoiding clearance during passage through splenic sinuses. Mature gametocytes exhibit increased deformability and reappear in the peripheral circulation, allowing uptake by mosquitoes. Here we define the reversible changes in erythrocyte membrane organization that underpin this biomechanical transformation. Atomic force microscopy reveals that the length of the spectrin cross-members and the size of the skeletal meshwork increase in developing gametocytes, then decrease in mature-stage gametocytes. These changes are accompanied by relocation of actin from the erythrocyte membrane to the Maurer's clefts. Fluorescence recovery after photobleaching reveals reversible changes in the level of coupling between the membrane skeleton and the plasma membrane. Treatment of midstage gametocytes with cytochalasin D decreases the vertical coupling and increases their filterability. A computationally efficient coarse-grained model of the erythrocyte membrane reveals that restructuring and constraining the spectrin meshwork can fully account for the observed changes in deformability.


Assuntos
Deformação Eritrocítica , Eritrócitos/ultraestrutura , Estágios do Ciclo de Vida , Microtúbulos/ultraestrutura , Modelos Biológicos , Plasmodium falciparum/ultraestrutura , Actinas/ultraestrutura , Simulação por Computador , Citoesqueleto/ultraestrutura , Espectrina/ultraestrutura
6.
J Cell Sci ; 129(2): 406-16, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26675237

RESUMO

Current first-line artemisinin antimalarials are threatened by the emergence of resistant Plasmodium falciparum. Decreased sensitivity is evident in the initial (early ring) stage of intraerythrocytic development, meaning that it is crucial to understand the action of artemisinins at this stage. Here, we examined the roles of iron (Fe) ions and haem in artemisinin activation in early rings using Fe ion chelators and a specific haemoglobinase inhibitor (E64d). Quantitative modelling of the antagonism accounted for its complex dependence on the chemical features of the artemisinins and on the drug exposure time, and showed that almost all artemisinin activity in early rings (>80%) is due to haem-mediated activation. The surprising implication that haemoglobin uptake and digestion is active in early rings is supported by identification of active haemoglobinases (falcipains) at this stage. Genetic down-modulation of the expression of the two main cysteine protease haemoglobinases, falcipains 2 and 3, renders early ring stage parasites resistant to artemisinins. This confirms the important role of haemoglobin-degrading falcipains in artemisinin activation, and shows that changes in the rate of artemisinin activation could mediate high-level artemisinin resistance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Sinergismo Farmacológico , Hemoglobinas , Humanos , Dose Letal Mediana , Leucina/análogos & derivados , Leucina/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/enzimologia , Proteólise , Proteínas de Protozoários/metabolismo
7.
PLoS Biol ; 13(4): e1002132, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25901609

RESUMO

Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART resistance.


Assuntos
Artemisininas/farmacologia , Plasmodium falciparum/fisiologia , Estresse Fisiológico , Animais , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Genoma de Protozoário , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética
8.
Int J Parasitol ; 44(12): 893-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25161101

RESUMO

Recent reports demonstrate that failure of artemisinin-based antimalarial therapies is associated with an altered response of early blood stage Plasmodium falciparum. This has led to increased interest in the use of pulse assays that mimic clinical drug exposure for analysing artemisinin sensitivity of highly synchronised ring stage parasites. We report a methodology for the reliable execution of drug pulse assays and detail a synchronisation strategy that produces well-defined tightly synchronised ring stage cultures in a convenient time-frame.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/efeitos dos fármacos , Resistência a Medicamentos , Plasmodium falciparum/crescimento & desenvolvimento , Esquizontes/efeitos dos fármacos
9.
Curr Opin Microbiol ; 16(6): 722-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23932203

RESUMO

During the asexual blood stage of its lifecycle, the malaria parasite Plasmodium falciparum grows and multiplies in the hemoglobin-rich environment of the human erythrocyte. Although the parasite has evolved unique strategies to survive in this environment, its interaction with iron represents an Achilles' heel that is exploited by many antimalarial drugs. Recent work has shed new light on how the parasite deals with hemoglobin breakdown products and on the role of iron as a mediator of the action of the antimalarial drug, artemisinin.


Assuntos
Antiprotozoários/farmacologia , Artemisininas/farmacologia , Heme/metabolismo , Ferro/metabolismo , Plasmodium falciparum/metabolismo , Eritrócitos/parasitologia , Humanos
10.
J Med Chem ; 56(15): 6200-15, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23837878

RESUMO

A novel class of antimalarial compounds, based on an indol-3-yl linked to the 2-position of a 4-aminoquinoline moiety, shows promising activity against the malaria parasite, Plasmodium falciparum . Compounds with a quaternary nitrogen on the quinoline show improved activity against the chloroquine-resistant K1 strain. Nonquaternerized 4-aminoquinolines retain significant potency but are relatively less active against the K1 strain. Alkylation of the 4-amino group preferentially improves the activity against the chloroquine-sensitive 3D7 strain. The quinoline-indoles show only weak activity as inhibitors of ß-hematin formation, and their activities are only weakly antagonized by a hemoglobinase inhibitor. The compounds appear to dissipate mitochondrial potential as an early event in their antimalarial action and therefore may exert their activity by compromising Plasmodium mitochondrial function. Interestingly, we observed a structural relationship between our compounds and the anticancer and anthelminthic compound, pyrvinium pamoate, which has also been proposed to exert its action via compromising mitochondrial function.


Assuntos
Aminoquinolinas/síntese química , Antimaláricos/síntese química , Indóis/síntese química , Mitocôndrias/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos , Células HEK293 , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/biossíntese , Hemoglobinas/metabolismo , Humanos , Indóis/química , Indóis/farmacologia , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Plasmodium falciparum/metabolismo , Relação Estrutura-Atividade
11.
Proc Natl Acad Sci U S A ; 110(13): 5157-62, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23431146

RESUMO

Reports of emerging resistance to first-line artemisinin antimalarials make it critical to define resistance mechanisms and identify in vitro correlates of resistance. Here we combine unique in vitro experimental and analytical approaches to mimic in vivo drug exposure in an effort to provide insight into mechanisms of drug resistance. Tightly synchronized parasites exposed to short drug pulses exhibit large stage-dependent differences in their drug response that correlate with hemoglobin digestion throughout most of the asexual cycle. As a result, ring-stage parasites can exhibit >100-fold lower sensitivity to short drug pulses than trophozoites, although we identify a subpopulation of rings (2-4 h postinvasion) that exhibits hypersensitivity. We find that laboratory strains that show little differences in drug sensitivity in standard in vitro assays exhibit substantial (>95-fold) difference in sensitivity when exposed to short drug pulses. These stage- and strain-dependent differences in drug sensitivity reflect differential response lag times with rings exhibiting lag times of up to 4 h. A simple model that assumes that the parasite experiences a saturable effective drug dose describes the complex dependence of parasite viability on both drug concentration and exposure time and is used to demonstrate that small changes in the parasite's drug response profile can dramatically alter the sensitivity to artemisinins. This work demonstrates that effective resistance can arise from the interplay between the short in vivo half-life of the drug and the stage-specific lag time and provides the framework for understanding the mechanisms of drug action and parasite resistance.


Assuntos
Artemisininas/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Lactonas/farmacologia , Modelos Biológicos , Plasmodium falciparum/metabolismo , Resistência a Medicamentos/fisiologia , Plasmodium falciparum/citologia , Especificidade da Espécie
12.
Proc Natl Acad Sci U S A ; 108(28): 11405-10, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709259

RESUMO

Combination regimens that include artemisinin derivatives are recommended as first line antimalarials in most countries where malaria is endemic. However, the mechanism of action of artemisinin is not fully understood and the usefulness of this drug class is threatened by reports of decreased parasite sensitivity. We treated Plasmodium falciparum for periods of a few hours to mimic clinical exposure to the short half-life artemisinins. We found that drug treatment retards parasite growth and inhibits uptake of hemoglobin, even at sublethal concentrations. We show that potent artemisinin activity is dependent on hemoglobin digestion by the parasite. Inhibition of hemoglobinase activity with cysteine protease inhibitors, knockout of the cysteine protease falcipain-2 by gene deletion, or direct deprivation of host cell lysate, significantly decreases artemisinin sensitivity. Hemoglobin digestion is also required for artemisinin-induced exacerbation of oxidative stress in the parasite cytoplasm. Arrest of hemoglobin digestion by early stage parasites provides a mechanism for surviving short-term artemisinin exposure. These insights will help in the design of new drugs and new treatment strategies to circumvent drug resistance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Hemoglobinas/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Animais , Transporte Biológico Ativo , Cisteína Endopeptidases/deficiência , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Endocitose/efeitos dos fármacos , Eritrócitos/parasitologia , Deleção de Genes , Genes de Protozoários , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Malária Falciparum/sangue , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Parasitemia/sangue , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento
13.
Eukaryot Cell ; 10(4): 556-64, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21239623

RESUMO

The most deadly of the human malaria parasites, Plasmodium falciparum, has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas de Membrana/metabolismo , Plasmodium falciparum/citologia , Plasmodium falciparum/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/genética , Merozoítos/fisiologia , Merozoítos/ultraestrutura , Plasmodium falciparum/patogenicidade , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
14.
J Struct Biol ; 173(1): 161-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20826218

RESUMO

Cryo transmission X-ray microscopy in the "water window" of photon energies has recently been introduced as a method that exploits the natural contrast of biological samples. We have used cryo tomographic X-ray imaging of the intra-erythrocytic malaria parasite, Plasmodium falciparum, to undertake a survey of the cellular features of this important human pathogen. We examined whole hydrated cells at different stages of growth and defined some of the structures with different X-ray density, including the parasite nucleus, cytoplasm, digestive vacuole and the hemoglobin degradation product, hemozoin. As the parasite develops from an early cup-shaped morphology to a more rounded shape, puncta of hemozoin are formed; these coalesce in the mature trophozoite into a central compartment. In some trophozoite stage parasites we observed invaginations of the parasite surface and, using a selective permeabilization process, showed that these remain connected to the RBC cytoplasm. Some of these invaginations have large openings consistent with phagocytic structures and we observed independent endocytic vesicles in the parasite cytoplasm which appear to play a role in hemoglobin uptake. In schizont stage parasites staggered mitosis was observed and X-ray-dense lipid-rich structures were evident at their apical ends of the developing daughter cells. Treatment of parasites with the antimalarial drug artemisinin appears to affect parasite development and their ability to produce the hemoglobin breakdown product, hemozoin.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/ultraestrutura , Artemisininas/farmacologia , Microscopia Crioeletrônica , Imuno-Histoquímica , Plasmodium falciparum/efeitos dos fármacos , Tomografia por Raios X
15.
Biochemistry ; 49(31): 6804-11, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20593810

RESUMO

The malaria parasite pigment, hemozoin, is a crystal of ferriprotoporphyrin IX (FP-Fe(III)), a product of hemoglobin digestion. Hemozoin formation is essential for FP-Fe(III) detoxification in the parasite; it is the main target of quinoline antimalarials and can modulate immune and inflammation responses. To gain further insight into the likely mechanisms of crystal formation and hemozoin reactivity, we have reanalyzed the crystal structure data for beta-hematin and solved the crystal structure of Plasmodium falciparum hemozoin. The analysis reveals that the structures are very similar and highlights two previously unexplored modes of FP-Fe(III) self-association involving pi-pi interactions that may initiate crystal formation and help to stabilize the extended structure. Hemozoin can be considered to be a crystal composed of pi-pi dimers stabilized by iron-carboxylate linkages. As a result, it is predicted that two surfaces of the crystal would consist of pi-pi dimers with Fe(III) partly exposed to solvent and capable of undergoing redox reactions. Accordingly, we demonstrate that the crystal possesses both general peroxidase activity and the ability to cause lipid oxidation.


Assuntos
Hemeproteínas/química , Plasmodium falciparum/química , Multimerização Proteica , Animais , Cristalização , Cristalografia por Raios X , Hemeproteínas/fisiologia , Peroxidação de Lipídeos , Peroxidases , Pigmentos Biológicos
16.
J Biol Inorg Chem ; 15(7): 1009-22, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20429019

RESUMO

During the intraerythrocytic stage of its lifecycle, the malaria parasite digests host erythrocyte hemoglobin, producing free ferriprotoporhyrin IX (FP). Crystallization of FP into hemozoin is essential for its detoxification and is the target of quinoline antimalarials. To gain further insight into the mechanism of hemozoin formation and quinoline action we have studied the behavior of FP and related derivatives in 40% methanol in water at different concentrations across a broad pH range (2-12). The complex behavior of FP can be modeled by incorporating a pH-dependent dimerization constant that reflects the influence of the ionization state of the propionate groups on the level of self-association. The analysis reveals that aqua-ligated FP has a low propensity to self-associate and that the predominant self-associated species are homodimeric hydroxide-ligated FP and heterodimeric aqua/hydroxide-ligated FP. The latter is predicted to be the main self-associated species at the pH of the parasite digestive vacuole. The state of FP also affects its interaction with chloroquine, with maximum affinity under neutral conditions and a more than 1,000-fold decrease in affinity under acidic (pH 2) and basic (pH 12) conditions. First-derivative absorption spectra of the chloroquine-FP complex indicate that the high-affinity interaction requires the chloroquine ring in its neutral aminoquinoline form and this in turn requires at least one of the FP species in the complex to be aqua-ligated.


Assuntos
Ácidos/química , Cloroquina/química , Hemeproteínas/química , Hemina/química , Soluções/química , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Hemeproteínas/metabolismo , Hemina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Malária/tratamento farmacológico , Estrutura Molecular , Plasmodium falciparum/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Suínos
17.
J Cell Sci ; 123(Pt 3): 441-50, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20067995

RESUMO

The digestive vacuole of the malaria parasite Plasmodium falciparum is the site of haemoglobin digestion and haem detoxification, and is the target of chloroquine and other antimalarials. The mechanisms for genesis of the digestive vacuole and transfer of haemoglobin from the host cytoplasm are still debated. Here, we use live-cell imaging and photobleaching to monitor the uptake of the pH-sensitive fluorescent tracer SNARF-1-dextran from the erythrocyte cytoplasm in ring-stage and trophozoite-stage parasites. We compare these results with electron tomography of serial sections of parasites at different stages of growth. We show that uptake of erythrocyte cytoplasm is initiated in mid-ring-stage parasites. The host cytoplasm is internalised via cytostome-derived invaginations and concentrated into several acidified peripheral structures. Haemoglobin digestion and haemozoin formation take place in these vesicles. The ring-stage parasites can adopt a deeply invaginated cup shape but do not take up haemoglobin via macropinocytosis. As the parasite matures, the haemozoin-containing compartments coalesce to form a single acidic digestive vacuole that is fed by haemoglobin-containing vesicles. There is also evidence for haemoglobin degradation in compartments outside the digestive vacuole. The work has implications for the stage specificity of quinoline and endoperoxide antimalarials.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Vacúolos/parasitologia , Animais , Benzopiranos/química , Células Cultivadas , Endocitose/fisiologia , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Hemeproteínas/metabolismo , Hemoglobinas/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Naftóis/química , Plasmodium falciparum/ultraestrutura , Rodaminas/química , Vacúolos/metabolismo , Vacúolos/ultraestrutura
18.
Cytometry A ; 77(3): 253-63, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20091670

RESUMO

The malaria parasite, Plasmodium falciparum, develops within human erythrocytes, consuming host hemoglobin to support its own growth. Reactive oxygen species (superoxide and hydrogen peroxide) are by-products of hemoglobin digestion and are believed to exert significant oxidative stress on the parasite. We have characterized a cell permeant, far red fluorescent nucleic acid-binding dye, SYTO 61, that can be used to distinguish between uninfected and infected erythrocytes in a flow cytometric format. The spectral properties of SYTO 61 make it suitable for use in combination with the fluorescent reactive oxygen species reporter 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-fluorescein diacetate acetyl ester. We have used this probe combination to measure oxidative stress in different stages of live P. falciparum. Low levels of the oxidized, fluorescent form of the reporter (2',7'-dichlorofluorescein, DCF) are detected in ring stage parasites; the DCF signal increases as the intraerythrocytic parasite matures into the trophozoite stage where active hemoglobin digestion occurs. Treatment of infected erythrocytes with the cysteine protease inhibitor, E-64, which inhibits hemoglobin digestion, decreases the DCF signal. We show that E-64 prevents schizont rupture but also causes delayed lethal effects when ring stage cultures are exposed to the drug. We also examined cultures of parasites in erythrocytes harboring 98% catalase inactivation and found no effect on growth and only a modest increase in DCF oxidation.


Assuntos
Eritrócitos/citologia , Citometria de Fluxo/métodos , Corantes Fluorescentes/farmacologia , Malária/parasitologia , Estresse Oxidativo , Plasmodium falciparum/metabolismo , Animais , Artemisininas/farmacologia , Catalase/metabolismo , Cloroquina/farmacologia , Cisteína Proteases/metabolismo , Eritrócitos/metabolismo , Humanos , Modelos Biológicos , Ácidos Nucleicos/química , Oxigênio/química
19.
Int J Parasitol ; 40(1): 123-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19766648

RESUMO

During its intra-erythrocytic development Plasmodium falciparum establishes a membrane network beyond its own limiting membrane in the cytoplasm of its host. These membrane structures play an important role in the trafficking of virulence proteins to the erythrocyte surface, however their ultrastructure is only partly defined and there is on-going debate regarding their origin, organisation and connectivity. We have used two whole cell imaging modalities to explore the topography of parasitised erythrocytes. Three-dimensional structured illumination microscopy provides resolution beyond the optical diffraction limit and permits analysis of fluorescently labelled whole cells. Immunoelectron tomography offers the possibility of high resolution imaging of individual ultrastructural features in a cellular context. Combined with serial sectioning and immunogold labelling, this technique permits precise mapping of whole cell architecture. We show that the P. falciparum exported secretory system comprises a series of modular units, comprising flattened cisternae, known as Maurer's clefts, tubular connecting elements, two different vesicle populations and electron-dense structures that have fused with the erythrocyte membrane. The membrane network is not continuous, pointing to an important role for vesicle-mediated transport in the delivery of cargo to different destinations in the host cell.


Assuntos
Eritrócitos/parasitologia , Eritrócitos/ultraestrutura , Plasmodium falciparum/ultraestrutura , Vacúolos/ultraestrutura , Animais , Membrana Celular , Tomografia com Microscopia Eletrônica , Membrana Eritrocítica/ultraestrutura , Eritrócitos/metabolismo , Interações Hospedeiro-Parasita , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Microscopia Eletrônica , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo , Fatores de Virulência/metabolismo
20.
J Neuroimmunol ; 208(1-2): 30-9, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19195719

RESUMO

An unexpectedly prominent aspect of murine experimental autoimmune encephalomyelitis is pre-onset astrocyte reactivity. Further examination of this phenomenon in the spinal cord demonstrates that grey matter, as well as white matter astrocytes, change their morphology and cell density from the earliest disease manifestation. Comparison of the two compartments reveals that, whereas white matter changes are rostro-caudally consistent, grey matter reactivity is spatially restricted and of varying amplitude between spinal cord levels. These data strongly suggest that in neuroinflammation early, cross-compartmental recruitment of astrocytes occurs, but with different expression patterns.


Assuntos
Astrócitos/imunologia , Astrócitos/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Fibras Nervosas Mielinizadas/imunologia , Fibras Nervosas Mielinizadas/patologia , Animais , Astrócitos/química , Química Encefálica/imunologia , Bovinos , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Proteína Glial Fibrilar Ácida , Humanos , Hipertrofia , Camundongos , Camundongos Endogâmicos NOD , Fibras Nervosas Mielinizadas/química , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/imunologia , Medula Espinal/química , Medula Espinal/citologia , Medula Espinal/imunologia , Medula Espinal/patologia , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...